Mining Calculator Bitcoin, Ethereum, Litecoin, Dash and Monero

Bitcoin Rhodium Mining Guide

Bitcoin Rhodium Mining Guide
Happy Mining!

All available XRC pools can be found on MiningPoolStats

Bitcoin Rhodium Mining Hardware

Baikal Giant+: 1.6 GH/s
Baikal Quad Cube: 1.2 GH/s
Baikal Giant: 900 MH/s
Baikal Quadruple Mini Miner: 600 MH/s
Baikal Miner Cube: 300 MH/s
Baikal Mini Miner: 150 MH/s

Mining Setup

To mine Bitcoin Rhodium you need to set up an XRC wallet and configure your miner of choice. You can choose between Web wallet, Electrum-XRC or Magnum wallet. To set up a web wallet please visit wallet.bitcoinrh.org. Or download and install Electrum-XRC wallet (recommended) for Windows, Linux and MacOS.
Web wallet: wallet.bitcoinrh.org
Electrum-XRC wallet: electrum.bitcoinrh.org
Magnum wallet: https://magnumwallet.co

Sign up for XRC web wallet if not yet done so

  1. Create an account, with your username, password and secure question.
  2. Sign in and click “Create Wallet”.
  3. Set up a strong transaction password. Make sure you store it securely in a secure password manager of choice.
  4. Copy the seed somewhere safe. It’d be a good idea to write seed on a hardcopy and keep it safe.
  5. Paste it to confirm you got it right.
  6. Grab an address for the mining step. Your wallet is now ready to mine XRC.

Instructions for mining XRC on the official pool

Pool link: poolcore.bitcoinrh.org
  1. Any miner that supports X13 will be able to mine XRC. We have a few examples below of miners that are well tested with Bitcoin Rhodium network.
  2. For any miner, configure the miner to point to:
(0–0.8 GH/s) stratum+tcp://poolcore.bitcoinrh.org:3061
(0.8–2 GH/s) stratum+tcp://poolcore.bitcoinrh.org:3062
(3–4 GH/s) stratum+tcp://poolcore.bitcoinrh.org:3063
(5+ GH/s) stratum+tcp://poolcore.bitcoinrh.org:3064
with your XRC address as username and x as password. You don’t need to open an account on pool. You will be mining to XRC address and mined coins will be transferred to your wallet
after blocks reach 10 block maturity
after you mined up minimal amount of coins (currently 0.1 XRC)
sometimes mined blocks could get rejected by network (orphaned) after they were counted as valid blocks. This is normal network behavior to follow longest chain
  1. http://poolcore.bitcoinrh.org is used to follow your miner and network statistics.

CPU Miner-Multi

Source: https://github.com/tpruvot/cpuminer-multi
Sample configuration with CPU Miner tested on UBUNTU.
{
“url” : “stratum+tcp://poolcore.bitcoinrh.org:3061”, “user” : “YOUR XRC ADDRESS”,
“pass” : “x”,
“algo” : “x13”, “threads” : 1,
“cpu-priority” : 5,
“cpu-affinity” : 1, “benchmark” : false, “debug” : true, “protocol”: true, “show-diff”: true, “quiet” : false
}
Command to run your CPUMiner: cpuminer -c cpuminer.json

SGMiner (ATI GPU)

SGMiner is a GPU-based mine: https://github.com/nicehash/sgminereleases
The configuration below was tested on Windows:
setx GPU_FORCE_64BIT_PTR 0
setx GPU_MAX_HEAP_SIZE 100
setx GPU_USE_SYNC_OBJECTS 1
setx GPU_MAX_ALLOC_PERCENT 100
setx GPU_SINGLE_ALLOC_PERCENT 100
cd C:\Software\sgminer-5.6.1-nicehash-51-windowsamd64 sgminer.exe
— gpu-platform 1 — algorithm x13mod -url stratum+tcp://poolcore.bitcoinrh. org:3062 — pool-user — userpass :x — auto-fan — temp-target 70 — temp-over- heat 82 — temp-cutoff 85 — gpu-fan 65–85 — log-file log.txt — no-adl — no-extra- nonce -P –T

CCMiner (NVIDIA GPU)

CCMiner is a GPU-based miner (NVIDIA)
Command to run your CCMINER:
ccminer-x64.exe -a x13 -o stratum+tcp://poolcore.bitcoinrh.org:3062 -O :without -D — show-diff

Baikal miner

Settings: Url:
(0–2 GH/s) stratum+tcp://poolcore.bitcoinrh.org:3062
(3–4 GH/s) stratum+tcp://poolcore.bitcoinrh.org:3063
(5+ GH/s) stratum+tcp://poolcore.bitcoinrh.org:3064
Algo: x13User: your XRC receiving address (make sure you set 2 distinct addresses for each hashing board)
Pass: x
Extranonce: leave off Priority set to 0 and 1
Once pool stratum address and your wallet as user are set up you should see your miner mining against XRC pool. When miner is working the status column is green. The pool and miner are incorrectly configured now as status says “Dead” highlighted in red.

Instructions for mining XRC on BSOD pool

Pool link: bsod.pw/en/pool/dashboard/XRC/
Use this code for your miner: -a x13 -o stratum+tcp://pool.bsod.pw:2582 -u WALLET.rig
BSOD pool allows both solo and party mining.
For solo mining use code: -a x13 -o stratum+tcp://pool.bsod.pw:2582 -u WALLET.rig -p m=solo And for party mining use: -a x13 -o stratum+tcp://pool.bsod.pw:2582 -u WALLET.rig -p m=party.yourpassword
NOTICE: You can use us for North America and asia for Asia instead of euin your .bat file or config.
You can also use BSOD pool’s monitor app for Android and iOS.

Instructions for mining XRC on ZERGPOOL

Zergpool offers low fees (just 0.5%) and also SOLO and PARTY mining with no extra fees.
To mine XRC on Zergpool use this command lines for your miner:
Regular: -a x13 -o stratum+tcp://x13.mine.zergpool.com:3633 -u -p c=XRC,mc=XRC Solo: -a x13 -o stratum+tcp://x13.mine.zergpool.com:3633 -u -p c=XRC,mc=XRC,m=solo Party: -a x13 -o stratum+tcp://x13.mine.zergpool.com:3633 -u -p c=XRC,mc=XRC,m=party
Use your coin wallet address as username in mining software. Specify c=SYMBOL as password to identify payout wallet coin, and the same coin in mc=SYMBOL to specify mining coin.
For more information and support please visit http://zergpool.com
Notice that when there are more pools mining XRC in different geographic/availability locations choose the nearest to you as lowest priority and then add desirable fall back pool options in different geographic locations or pools. This is useful when one pool experiences issues, to fall back to different pool in Bitcoin Rhodium network.

Calculate your Bitcoin Rhodium mining profitability

WhatToMine: https://whattomine.com/coins/317-xrc-x13
CoinCalculators: https://www.coincalculators.io/coin/bitcoin-rhodium

Feel free to ask questions in Discord community. There are lots of helpful people around the world watching XRC 24x7.

Bitcoin Rhodium Dev Team
submitted by BitcoinRh to BitcoinRhodium [link] [comments]

Asicpower AP9-SHA256 Review


Asicpower AP9-SHA256 Review

Bitmain is regarded as one of the most influential companies in the ASIC mining industry. It is estimated that they have manufactured approximately 53% of all mining equipment.Without including their mining profits, that’s around $140 million dollars in sales. These figures are staggering, but Bitmain’s monopoly of the Bitcoin ASIC market may come to an end, following the release of PowerAsic’s asicpower AP9-SHA256.

About the asicpower AP9-SHA256

Designed with brand new technology and boasting 94 TH/s per miner, the AP(-SHA256 is the most powerful and efficient Bitcoin miner to date.PowerAsic claims they spent $12 million dollars on research, development, and prototypes.PowerAsic also noted that their miners take advantage of ASICBOOST, an exploit of Bitcoin’s algorithm which improves mining efficiency by 20%.An unusual approach separate Powerasic’s miner to the other manufactures is the implementation of copper heat-sink claimed to have a superior thermal conductivity 69% better than aluminium. Don’t take their words for it but confirm the facts are correct on widely well known and published science documents as this one.The first batch of miners were announced and made available for order in August of 2019, with start scheduled for shipment in September, 2019.
Powerasic claims that the machines are around 40 percent more productive than the most proficient ASIC on the market, Bitmain’s Antminer S17.According to PowerAsic, they started a mining project with the aim to bring much needed competition to the market…We want to ‘make SHA256 great again.Sitting at the hefty price of $2,795.00, the powerasic AP9-SHA256 is far from affordable for the average person. Fortunately, due to the newly born rivalry between Bitmain and Powerasic, the price will probably lower with time and competition.The power supply for this unit is included and integrated in the top-box also including the controler card as a one unit. You will also get standard power cable, network cable, manual and software in the packet. In comparison to the price of the Antminer S17 , the Powerasic AP9-Sha256 is a better value.

Power Supply

The integrated PSU 3300W has a inputVoltage 220V 50Hz 30A. There are 2 fan 40mm., 1 fan 60mm to keep it cool and the power cable 3 legs following CEE 7 standard.Professional mining hardware runs optimally at 220-240V, hence why mining farms step down their own electricity supply to 220-240V. Note that 220V current is only found outside of the US – American outlets are 110V by default. Unless you want to hire an electrician, this could cause some people trouble adapt to the eficient and recomended 220V power needed, still 110V will get the job done, but they are not ideal for optimum mining performance.

Power Consumption

Thanks to the powerasic AP9-HA256’s new 7nm generation of ASIC chips, the AP9-SHA256 has become the most electrically-efficient miner on the market.Consuming merely 30.J/TB, or 2860W from the wall, the 16T is 30% more electrically-efficient than the Antminer S17.

Profitability

Powerasic ’s new ASIC technology is impressive. When compared to its closest competitor, the Antminer S17, the powerasic AP9-HA256 is the clear winner. It hashes at 94 TH/s, as opposed to the S17’s 56 TH/s. Moreover, the the AP9-HA256 consumes 30J/GH, whereas the S17 consumes 39-45J/TB.The difference in power consumption is miniscule, but when it comes to large-scale mining, the the AP9-HA256’s edge will drastically increase the profitability of a mining operation. This ASIC is profitable not only for mining on a large scale, but for the individual miner as well.Take a look at the projected mining profitability of a single miner:Note that is appears profitable even with high electricity costs ($0.1 per KW/h). With $0.05 / KW/h it’s even more profitable:📷Each powerasic AP9-HA256 will generate about $6,009 per year (calculated with 1 BTC=$10,141.5). Mining profitability may vary. You can usethis free profitability calculator to determine your projected earnings.

Is powerasic AP9-HA256 a Scam?

There is been a lot of talk on Twitter that powerasic AP9-HA256 is a scam. It appears it is not, as many users are already claiming to have received their miners.Slush, the creator ot Slush Mining Pool and the TREZOR hardware wallet, claims on Twitter that he has seen units and knows people who have had their miners delivered:

Verdict: Is The Antminer S17 Outdated?

When the first batch of Bitmain’s Antminer S17 ASICs reached the eager hands of miners, they were all the rage. The S17 was renowned as the most efficient ASIC miner on the market. Many used the S17 as the industry’s golden standard.Up until the launch of the powerasic AP9-HA256, it was the golden standard.But, now?Things have changed.Not only is the powerasic AP9-HA256 more powerful than its predecessor from Bitmain, but also more efficient, and therefore, more profitable.Ever since the announcement of the new ASIC, there was widespread speculation of its legitimacy – and rightly so.The Bitcoin community has been plagued with small, phony companies manipulating images of preexisting antminers as a ploy to hype up their fake products. Nevertheless, powerasic AP9-HA256 is taking things seriously, and their first batch of miners have lived up to expectations.The fact of the matter is, Bitmain’s most powerful and efficient antminer has been dethroned by the new reigning king of ASICs: The powerasic AP9-HA256.

Conclusion

Bitmain has dominated the ASIC market since its inception in 2013.There are a few other companies producing ASICs. However, before the creation of PowerAsics AP9-SHA256., Bitmain was the only company with a proven track record that sold efficient miners directly to the public.Powerasic AP9-HA256 has the potential to bring Bitmain’s monopoly to an end. Powerasic AP9-HA256 has a bright future ahead of them. Now that Bitmain has noteworthy competition, it will be interesting to see how it affects the market. The powerasic AP9-HA256 is the best option (for now) for anyone getting started with mining. Powerasic’s innovation should force other ASIC producers to innovate and force other companies to release new miners with better efficiency. So whether you’re buying a miner now or soon, you’re likely to benefit from the development of this new miner. For more, Visit Us: https://asicpower.net/product.php
submitted by farwa786 to u/farwa786 [link] [comments]

I've been working on a bot for crypto subs like /r/bitcoin for a few days now. Say hello to crypto_bot!

Hey guys, I've been working on crypto_bot for some time now. It provides a bunch of features that I hope will enhance your experience on /bitcoin (and any other subreddit). You can call it by mentioning it in a comment. I started working on this a few days ago. I'm constantly adding new features and will update this post when I do, but if you're interested I'll post all updates and some tips at /crypto_bot. Please either comment here, message me, or post there if you'd like to report a bug, request a feature, or offer feedback. There's also one hidden command :)
You can call multiple commands in one comment. Here's a description of the commands you can use:

Market Data:

crypto_bot 
Responds with the USD price of one bitcoin from an average of six of the top bitcoin exchanges (BTC-E, Bitstamp, Bitfinex, Coinbase, Kraken, Cryptsy).
crypto_bot ticker 
Responds with the USD price of one bitcoin at seven exchanges (all of the ones listed above, plus LocalBitcoins). Also lists the average at the bottom.
crypto_bot [exchange] 
Responds with the USD price of one bitcoin from [exchange] (any of the seven listed above).
crypto_bot [litecoin|ltc|dogecoin|doge] 
Responds with the USD price of one litecoin, or the price of 1 doge and 1,000 doge.
crypto_bot litecoin|ltc [exchange] 
Responds with the USD price of one litecoin from BTC-E, Bitfinex, Kraken, or Cryptsy.
crypto_bot [currency] 
Responds with the price of one bitcoin in the specified currency. Available currencies (symbols): JPY, CNY, SGD, HKD, CAD, NZD, AUD, CLP, GBP, DKK, SEK, ISK, CHF, BRL, EUR, RUB, PLN, THB, KRW, TWD.

Information:

crypto_bot [about|info] [arg] 
Responds with a short description about [arg], as well as a link to an external site (Wikipedia, bitcoin.it, and some others) for more information. You can list multiple arguments and get a description for each. Available arguments: bitcoin, block chain, transaction, address, genesis, satoshi, mining, confirmation, coinbase, gox, cold wallet, hot wallet.
crypto_bot legal 
Responds with a chart about the legality of bitcoin in 40 countries, copied straight from Wikipedia.
crypto_bot [explain transaction delay|explain tx delay] 
Responds with an explanation of why transactions may take longer to confirm (the bot specifically discusses spam-transaction attacks in this command).

Network information/tools:

crypto_bot difficulty 
Responds with the current difficulty of the bitcoin network.
crypto_bot [height|number of blocks] 
Responds with the current height of the block chain.
crypto_bot retarget 
Responds with what block the difficulty will recalculate at, as well as how many blocks until the network reaches that block.
crypto_bot [unconfirmed transactions|unconfirmed tx] 
Responds with the current number of unconfirmed transactions.
crypto_bot [new address|generate address] 
Responds with a newly-generated public and private key. This is mainly to provide an explanation of what both look like, and contains a clear warning to not use or send bitcoins to the address.
crypto_bot blockinfo [height] 
Responds with information about block #[height], including its hash, time discovered, and number of transactions.
crypto_bot [address] 
Responds with information about [address], including its balance and number of transactions.
crypto_bot [transaction_id] 
Responds with information about [transaction_id], including what block it was included in, its size, and its inputs and outputs.

Calculators:

crypto_bot calc <# miningspeed> [#][w] [#][kwh] [#][difficulty] [hc$#] [$#] [#%] 
Responds with calculations and information about how a miner would do with the above data (mining calculator). The only required field is mining speed. Order of the arguments does not matter. Everything other than hashrate defaults to the following if not given: w (watts): 0, kwh ($kilowatt cost/hour): 0, difficulty: current network difficulty, hc$ (hardware cost): $0, $: current bitcoin price in usd (according to Coinbase), % (pool fee): 0. The calculator does not account for nor allow for input of the increase/decrease of difficulty over time, though I may add this feature soon. Working hashing speeds: h/s, kh/s, mh/s, gh/s, th/s, ph/s.
Example usage: "crypto_bot calc 30th/s 10w .12kwh hc$55 1.5%" (to make it easier to remember, th/s can also be inputted as ths). This calls the bot with a hashrate of 30 th/s, electricity usage of 10w, a cost of $.12 kWh, a hardware cost of $55, and a pool fee of 1.5%.
crypto_bot number of btc <$amount to convert> [bp$bitcoin price] 
Responds with the number of bitcoins you could buy with <$amount to convert>. If the comment specifies a [bp$bitcoin price], it calculates it with that exchange rate. Otherwise, it uses the rate from Coinbase.
Example usage: "crypto_bot $419.29 bp$180.32" This calculates how many bitcoins you can buy if you have $419.29 and the bitcoin exchange rate is $180.32.

Broadcasting

SignMessage! "" 
Signs a message in the bitcoin block chain in a transaction using OP_RETURN. The message must be less than 40 characters.
Example usage: "SignMessage! "Post messages in the block chain!""
I hope you find this bot useful! Again, if you have any questions or comments, please either comment on this post, message me, or post on /crypto_bot.
Update 1 (June 24, 2015, 17:35): The bot now responds with information if you post a link to a block, transaction, or address on Blockchain.info in a comment, even if you don't call it. For example, if I wrote "https://blockchain.info/block/0000000000000000126448be07fb1f82af19fbbf07dd7e07ebcd08d42c2660cb" in a comment, it would respond with information about block #362,377.
Update 2 (July 10, 2015, 1:59): The bot now has two additional commands: "unconfirmed transactions" (or "unconfirmed tx") and "explain transaction delay" (or "explain tx delay"). The first command responds with the number of unconfirmed transactions, and the second explains why transactions might take extra time to confirm.
Update 3 (August 24, 2015, 1:34): The bot now responds in a better way than before when transaction ids or addresses are posted. Before, it only responded when the transaction id or address was used in a link to Blockchain.info. Now the bot will respond whenever a transaction id or address is posted at all; a link to Blockchain.info is no longer necessary.
Update 4 (August 27, 2015, 3:00): The bot can now sign messages in the Bitcoin block chain using OP_RETURN.
submitted by busterroni to Bitcoin [link] [comments]

PSA: Hashflare isn't as profitable as it seems like it is

For example, if you purchase 1 TH/S of hash rate, in one year, you'll only profit ~$10. This is because of the maintenance fee of $0.0035 per 10 GH/S, and also the increasing difficulty of mining.
Calculation: http://www.mycryptobuddy.com/BitcoinMiningCalculatopath?hashrate=1&powerCost=0&poolFee=0&rejectRate=0&hardwareCost=220&sellingProfile=never&recurringCosts=10.85
The recurring cost of $10.85 per month is because of the maintenance fee. $0.0035 * 100 = $0.35 per day. $0.35 * 31 Days = 10.85 per month
submitted by Eduguy1 to hashflare [link] [comments]

We are miners: There is a legend whose name is derived from King Arthur, meaning the world of bliss

We are miners: There is a legend whose name is derived from King Arthur, meaning the world of bliss
We are an old leek, old miner! Being cut one after another, filling one by one, this thing is very fun, we are still playing.

From 2013 the present, the crypto mining circle is full of stories. Do you remember the butterfly mining machine that was pre-ordered a year later? Remember that the ASICMiner (friedcat) accounted for one-third of the world's hash rate in the BTCGuild mining pool?

In the interviewing ngzhang (Zhang Nangeng, the founder of Avalon) by Cybtc.com, he said,

"Avalon's name is derived from the legend of King Arthur, meaning the world of bliss."

Zhao Dong mentioned in the interview by Cybtc.com,

"I am not selling the house for the sake of speculation. I watched the property market, so I sold the house. I just touched Bitcoin, so I played Bitcoin. If I think that I am selling the house for the sake of speculation, it is a big misunderstanding."

On the 2013 Singles Day (Double eleven day), Bitmain announced that "55nm mining chip test was successful, power consumption is as low as 0.68w/gh/s, the upcoming spot ant mining machine".

2015 Antminer with you and me New Year's Eve - Essays waiting for you! \"Ant and me: my encounter with the antminer machine\" creative painting of beauty fendy.

In an interview with zhanketuan, the CEO of Bitmain always said,

"Doing things well every day is our plan."

Dream

The southwestern border of China is also known as Yunnan, also known as the south of the colorful clouds. The name of Cybtc.com, Colorful Yunnan Bitcoin" comes from here. There is beautiful scenery here, the climate of the four seasons like spring, the blue sky, the white clouds, there is abundant hydropower here. Resources. Every digital currency miner is profitable, but when you are in the arms of nature, watching a mining machine creak and calculating bitcoin transactions from around the world. This feeling is somewhat wonderful. The combination of high-tech and primitive nature will make you forget the difficulty of life, forget the pressure of work, and the feeling of magic and coziness is born. Feel like you don't want to leave, as Lijiang or Dali. In this deep valley, building a small house. The family is enjoying themselves in this pure nature. Sleeping early every day, sleeping until you wake up naturally. Soaking a pot of Pu'er tea, watching the river in front of you, let it be sinister in the world, all thrown into the brain Rear.

On the mining road: the rising sun shines above the sea of clouds.

On the mine road: enter the cloud, a pool of Jasper into the eye.

On the mine road: the lake and the autumn moon are two phases, and the windless mirror on the surface of the pond is not worn.

"Looking at the Dongting Mountains and Waters, a Green Snail in a Silver Plate" - "Wang Dongting" Tang Liu Yuxi
. . . . . . . . .

Reality

Brothers can wake up, it is a dream. The days of miners are actually very hard, Yunnan's highways and mountains are more curved. Every day, going to the mine to drive a mountain road for 10 hours is a common practice. You can see the piles of landslides everywhere. On the road beside the cliff, loneliness and loneliness hit the heart.

On the mine road: the altitude changes, the road surface is slippery.

I hope that the days of the miners will be better every day!

Recently, Miners of Cybtc 2019 New Year One-Stop Group Mining have all been put on the shelves. Bitcoin has been like this river, rolling forward. Come on, let the bear market come even more fierce!

https://preview.redd.it/u4wm4kcdrxa21.jpg?width=1280&format=pjpg&auto=webp&s=7fc62840e647f1a0ee3cca9cc08e095e809534f6

Pictures of the mine.

The mining machine has just put on the frame.

Mine curtain temperature has been checked not more than 12 degrees.

Mine air inlet temperature.

Mine air outlet temperature.

Ventilator.

Mine dedicated transformers.
English:www.cybtc.org
Twitter: https://twitter.com/Cybtc
Telegram: https://t.me/joinchat/LgPYnE1vPpXqYDVpPaQyxw
Discord: https://discord.gg/RfCZMNY
submitted by cybtc to BitcoinMining [link] [comments]

Decred Journal — May 2018

Note: New Reddit look may not highlight links. See old look here. A copy is hosted on GitHub for better reading experience. Check it out, contains photo of the month! Also on Medium

Development

dcrd: Significant optimization in signature hash calculation, bloom filters support was removed, 2x faster startup thanks to in-memory full block index, multipeer work advancing, stronger protection against majority hashpower attacks. Additionally, code refactoring and cleanup, code and test infrastructure improvements.
In dcrd and dcrwallet developers have been experimenting with new modular dependency and versioning schemes using vgo. @orthomind is seeking feedback for his work on reproducible builds.
Decrediton: 1.2.1 bugfix release, work on SPV has started, chart additions are in progress. Further simplification of the staking process is in the pipeline (slack).
Politeia: new command line tool to interact with Politeia API, general development is ongoing. Help with testing will soon be welcome: this issue sets out a test plan, join #politeia to follow progress and participate in testing.
dcrdata: work ongoing on improved design, adding more charts and improving Insight API support.
Android: design work advancing.
Decred's own DNS seeder (dcrseeder) was released. It is written in Go and it properly supports service bit filtering, which will allow SPV nodes to find full nodes that support compact filters.
Ticket splitting service by @matheusd entered beta and demonstrated an 11-way split on mainnet. Help with testing is much appreciated, please join #ticket_splitting to participate in splits, but check this doc to learn about the risks. Reddit discussion here.
Trezor support is expected to land in their next firmware update.
Decred is now supported by Riemann, a toolbox from James Prestwich to construct transactions for many UTXO-based chains from human-readable strings.
Atomic swap with Ethereum on testnet was demonstrated at Blockspot Conference LATAM.
Two new faces were added to contributors page.
Dev activity stats for May: 238 active PRs, 195 master commits, 32,831 added and 22,280 deleted lines spread across 8 repositories. Contributions came from 4-10 developers per repository. (chart)

Network

Hashrate: rapid growth from ~4,000 TH/s at the beginning of the month to ~15,000 at the end with new all time high of 17,949. Interesting dynamic in hashrate distribution across mining pools: coinmine.pl share went down from 55% to 25% while F2Pool up from 2% to 44%. [Note: as of June 6, the hashrate continues to rise and has already passed 22,000 TH/s]
Staking: 30-day average ticket price is 91.3 DCR (+0.8), stake participation is 46.9% (+0.8%) with 3.68 million DCR locked (+0.15). Min price was 85.56. On May 11 ticket price surged to 96.99, staying elevated for longer than usual after such a pump. Locked DCR peaked at 47.17%. jet_user on reddit suggested that the DCR for these tickets likely came from a miner with significant hashrate.
Nodes: there are 226 public listening and 405 normal nodes per dcred.eu. Version distribution: 45% on v1.2.0 (up from 24% last month), 39% on v1.1.2, 15% on v1.1.0 and 1% running outdaded versions.

ASICs

Obelisk team posted an update. Current hashrate estimate of DCR1 is 1200 GH/s at 500 W and may still change. The chips came back at 40% the speed of the simulated results, it is still unknown why. Batch 1 units may get delayed 1-2 weeks past June 30. See discussions on decred and on siacoin.
@SiaBillionaire estimated that 7940 DCR1 units were sold in Batches 1-5, while Lynmar13 shared his projections of DCR1 profitability (reddit).
A new Chinese miner for pre-order was noticed by our Telegram group. Woodpecker WB2 specs 1.5 TH/s at 1200 W, costs 15,000 CNY (~2,340 USD) and the initial 150 units are expected to ship on Aug 15. (pow8.comtranslated)
Another new miner is iBelink DSM6T: 6 TH/s at 2100 W costing $6,300 (ibelink.co). Shipping starts from June 5. Some concerns and links were posted in these two threads.

Integrations

A new mining pool is available now: altpool.net. It uses PPLNS model and takes 1% fee.
Another infrastructure addition is tokensmart.io, a newly audited stake pool with 0.8% fee. There are a total of 14 stake pools now.
Exchange integrations:
OpenBazaar released an update that allows one to trade cryptocurrencies, including DCR.
@i2Rav from i2trading is now offering two sided OTC market liquidity on DCUSD in #trading channel.
Paytomat, payments solution for point of sale and e-commerce, integrated Decred. (missed in April issue)
CoinPayments, a payment processor supporting Decred, developed an integration with @Shopify that allows connected merchants to accept cryptocurrencies in exchange for goods.

Adoption

New merchants:
An update from VotoLegal:
michae2xl: Voto Legal: CEO Thiago Rondon of Appcívico, has already been contacted by 800 politicians and negotiations have started with four pre-candidates for the presidency (slack, source tweet)
Blockfolio rolled out Signal Beta with Decred in the list. Users who own or watch a coin will automatically receive updates pushed by project teams. Nice to see this Journal made it to the screenshot!
Placeholder Ventures announced that Decred is their first public investment. Their Investment Thesis is a clear and well researched overview of Decred. Among other great points it noted the less obvious benefit of not doing an ICO:
By choosing not to pre-sell coins to speculators, the financial rewards from Decred’s growth most favor those who work for the network.
Alex Evans, a cryptoeconomics researcher who recently joined Placeholder, posted his 13-page Decred Network Analysis.

Marketing

@Dustorf published March–April survey results (pdf). It analyzes 166 responses and has lots of interesting data. Just an example:
"I own DECRED because I saw a YouTube video with DECRED Jesus and after seeing it I was sold."
May targeted advertising report released. Reach @timhebel for full version.
PiedPiperCoin hired our advisors.
More creative promos by @jackliv3r: Contributing, Stake Now, The Splitting, Forbidden Exchange, Atomic Swaps.
Reminder: Stakey has his own Twitter account where he tweets about his antics and pours scorn on the holders of expired tickets.
"Autonomy" coin sculpture is available at sigmasixdesign.com.

Events

BitConf in Sao Paulo, Brazil. Jake Yocom-Piatt presented "Decentralized Central Banking". Note the mini stakey on one of the photos. (articletranslated, photos: 1 2 album)
Wicked Crypto Meetup in Warsaw, Poland. (video, photos: 1 2)
Decred Polska Meetup in Katowice, Poland. First known Decred Cake. (photos: 1 2)
Austin Hispanic Hackers Meetup in Austin, USA.
Consensus 2018 in New York, USA. See videos in the Media section. Select photos: booth, escort, crew, moon boots, giant stakey. Many other photos and mentions were posted on Twitter. One tweet summarized Decred pretty well:
One project that stands out at #Consensus2018 is @decredproject. Not annoying. Real tech. Humble team. #BUIDL is strong with them. (@PallerJohn)
Token Summit in New York, USA. @cburniske and @jmonegro from Placeholder talked "Governance and Cryptoeconomics" and spoke highly of Decred. (twitter coverage: 1 2, video, video (from 32 min))
Campus Party in Bahia, Brazil. João Ferreira aka @girino and Gabriel @Rhama were introducing Decred, talking about governance and teaching to perform atomic swaps. (photos)
Decred was introduced to the delegates from Shanghai's Caohejing Hi-Tech Park, organized by @ybfventures.
Second Decred meetup in Hangzhou, China. (photos)
Madison Blockchain in Madison, USA. "Lots of in-depth questions. The Q&A lasted longer than the presentation!". (photo)
Blockspot Conference Latam in Sao Paulo, Brazil. (photos: 1, 2)
Upcoming events:
There is a community initiative by @vj to organize information related to events in a repository. Jump in #event_planning channel to contribute.

Media

Decred scored B (top 3) in Weiss Ratings and A- (top 8) in Darpal Rating.
Chinese institute is developing another rating system for blockchains. First round included Decred (translated). Upon release Decred ranked 26. For context, Bitcoin ranked 13.
Articles:
Audios:
Videos:

Community Discussions

Community stats: Twitter 39,118 (+742), Reddit 8,167 (+277), Slack 5,658 (+160). Difference is between May 5 and May 31.
Reddit highlights: transparent up/down voting on Politeia, combining LN and atomic swaps, minimum viable superorganism, the controversial debate on Decred contractor model (people wondered about true motives behind the thread), tx size and fees discussion, hard moderation case, impact of ASICs on price, another "Why Decred?" thread with another excellent pitch by solar, fee analysis showing how ticket price algorithm change was controversial with ~100x cut in miner profits, impact of ticket splitting on ticket price, recommendations on promoting Decred, security against double spends and custom voting policies.
@R3VoLuT1OneR posted a preview of a proposal from his company for Decred to offer scholarships for students.
dcrtrader gained a couple of new moderators, weekly automatic threads were reconfigured to monthly and empty threads were removed. Currently most trading talk happens on #trading and some leaks to decred. A separate trading sub offers some advantages: unlimited trading talk, broad range of allowed topics, free speech and transparent moderation, in addition to standard reddit threaded discussion, permanent history and search.
Forum: potential social attacks on Decred.
Slack: the #governance channel created last month has seen many intelligent conversations on topics including: finite attention of decision makers, why stakeholders can make good decisions (opposed to a common narrative than only developers are capable of making good decisions), proposal funding and contractor pre-qualification, Cardano and Dash treasuries, quadratic voting, equality of outcome vs equality of opportunity, and much more.
One particularly important issue being discussed is the growing number of posts arguing that on-chain governance and coin voting is bad. Just a few examples from Twitter: Decred is solving an imagined problem (decent response by @jm_buirski), we convince ourselves that we need governance and ticket price algo vote was not controversial, on-chain governance hurts node operators and it is too early for it, it robs node operators of their role, crypto risks being captured by the wealthy, it is a huge threat to the whole public blockchain space, coin holders should not own the blockchain.
Some responses were posted here and here on Twitter, as well as this article by Noah Pierau.

Markets

The month of May has seen Decred earn some much deserved attention in the markets. DCR started the month around 0.009 BTC and finished around 0.0125 with interim high of 0.0165 on Bittrex. In USD terms it started around $81 and finished around $92, temporarily rising to $118. During a period in which most altcoins suffered, Decred has performed well; rising from rank #45 to #30 on Coinmarketcap.
The addition of a much awaited KRW pair on Upbit saw the price briefly double on some exchanges. This pair opens up direct DCR to fiat trading in one of the largest cryptocurrency markets in the world.
An update from @i2Rav:
We have begun trading DCR in large volume daily. The interest around DCR has really started to grow in terms of OTC quote requests. More and more customers are asking about trading it.
Like in previous month, Decred scores high by "% down from ATH" indicator being #2 on onchainfx as of June 6.

Relevant External

David Vorick (@taek) published lots of insights into the world of ASIC manufacturing (reddit). Bitmain replied.
Bitmain released an ASIC for Equihash (archived), an algorithm thought to be somewhat ASIC-resistant 2 years ago.
Three pure PoW coins were attacked this month, one attempting to be ASIC resistant. This shows the importance of Decred's PoS layer that exerts control over miners and allows Decred to welcome ASIC miners for more PoW security without sacrificing sovereignty to them.
Upbit was raided over suspected fraud and put under investigation. Following news reported no illicit activity was found and suggested and raid was premature and damaged trust in local exchanges.
Circle, the new owner of Poloniex, announced a USD-backed stablecoin and Bitmain partnership. The plan is to make USDC available as a primary market on Poloniex. More details in the FAQ.
Poloniex announced lower trading fees.
Bittrex plans to offer USD trading pairs.
@sumiflow made good progress on correcting Decred market cap on several sites:
speaking of market cap, I got it corrected on coingecko, cryptocompare, and worldcoinindex onchainfx, livecoinwatch, and cryptoindex.co said they would update it about a month ago but haven't yet I messaged coinlib.io today but haven't got a response yet coinmarketcap refused to correct it until they can verify certain funds have moved from dev wallets which is most likely forever unknowable (slack)

About This Issue

Some source links point to Slack messages. Although Slack hides history older than ~5 days, you can read individual messages if you paste the message link into chat with yourself. Digging the full conversation is hard but possible. The history of all channels bridged to Matrix is saved in Matrix. Therefore it is possible to dig history in Matrix if you know the timestamp of the first message. Slack links encode the timestamp: https://decred.slack.com/archives/C5H9Z63AA/p1525528370000062 => 1525528370 => 2018-05-05 13:52:50.
Most information from third parties is relayed directly from source after a minimal sanity check. The authors of Decred Journal have no ability to verify all claims. Please beware of scams and do your own research.
Your feedback is precious. You can post on GitHub, comment on Reddit or message us in #writers_room channel.
Credits (Slack names, alphabetical order): bee, Richard-Red, snr01 and solar.
submitted by jet_user to decred [link] [comments]

How to get $100 million in VC funding to build an industry that makes $300 million profit without spending a dime

Yesterday I received an unexpected gift: a link to a copy of the slides of the presentation that 21inc gave to investors, apparently between October and December 2014, when they were still calling themselves "21E6".
(The sender asked to remain anonymous, and I am not sure about the copyright status of the file; so I would rather not repost it here yet. But it seems that several other people, including some of the 21inc competitors, have got a copy too; so anyone who is really interested can probably get it too.)
The slides don't have much new factual information, and basically confirm what we already guessed about the 21inc business plans. But they show that we severely underestimated their chutzpah and hype. Here are some random highlights (as far as I can decipher from the slides):
They had three relevant mining rig designs in the plans, that would require funding:
Codename Qty TH/s kW Cost Deploy Turnoff Profit($) --------------- ---- ---- --- ---- ------------ ----------- ----------- CyrusOne(v2), 7904 2.0 1.3 --- (already on) Apr 2015 ~23,000,000 IO(v1v3) 3250 5.2 1.3 2000 Jan 2015 Aug 2016 ~24,000,000 Brownfield(v3) 1900 5.5 1.3 2450 Mar 2015 > Nov 2017 ~20,000,000 
The "TH/s", "Cost", and "kW" columns are per "system", i.e. a mining unit containing many chips. The last column is the expected profit to be made from each set of mining hardware over its expected lifetime. (The slides have some other details that do not seem to be important.)
The first line is the hardware that they were mining with at the time of the presentation; that must be why the "Cost" (as far as investors are concerned) is given as zero.
The second line seems to be an upgrade of their previous mining hardware from v1 chips (which gave 2.7 PH/s total at the time) to v3 chips (which would give 17 PH/s) .
In reality, we have seen that their share of hashpower dwindled through all of 2015, and (AFAIK) they haven't mined a single block in the last six months. Were they still mining with CyrusOne on extra-life, or were they using the upgraded IO which was turned off prematurely? What happened to Brownfield?
However, their mining operations were secondary; the meat of their plan was the embedded chip, called BitSplit at the time.
The BitSPlit chip (as we suspected) was hard-wired to send 75% of the block reward to the 21inc wallet, whose address was burned in the silicon, and 25% to the user's wallet.
By my calculations, assuming 50 GH/s and no increase in the difficulty, the BitSplit would mine one block in 570 years, on average, and collect less than 2 BTC of reward in that time. So, of course, the chip was hard-wired to mine into a pool run by 21inc, that would spread the user's 25% of those 2 BTC (expected) into a daily regular trickle of a couple thousand satoshis. Their own mining operations would provide the BTC needed for the pool payouts of all the millions of chips that they expected to be running out there.
They projected to release 3 versions:
Model Qty GH/s W Cost Deploy Profit($) --------------- ---------- ---- -- ---- ------------ ------------ USB hub-charger 250,000 38 15 $35 Mar 2015 ~8,000,000 Embedded chip 1,000,000 63 15 $8 Aug 2015 ~103,000,000 BitSplit Inside 10,000,000 20 5 $0 Oct 2015 ~292,000,000 
The "Qty" is the expected number of units sold. The last column, IIUC, is the profit that 21inc expected to make from the 75% cut of the BTC produced by all the chips, over their expected lifetime.
In the above "USB hub-charger" model was a USB charging unit, roughly 3 x 2 x 1 inches, with 2 USB outputs and a mining chip inside, produced by 21inc themselves "to seed the market".
The second line, which I called "Embedded chip", seems to refer to discrete BitSplit chips provided by 21inc and included in consumer devices (like routers etc.) by OEM manufacturers.
The "BitSplit Inside" model would be the BitSplit integrated into the chipsets of other manufacturers, and manufactured by them. Its cost is listed as "$0" (for 21inc) because they expected those manufacturers to shoulder the cost of manufacturing and integrating the mining chip.
Apparently the market-seeding "USB hub-charger" was later replaced by the "Bitcoin Computer" (aka the PiTato). In one slide it is called "multifunctional BitSplit device", and depicted as a sleek shiny black box, the size of a cigarette pack, with a power cable and 2-3 USB or similar outputs. If that is supposed to be the PiTato, presumably they had not yet realized that a 15 w computer would need a cooling fan with a miniature wind tunnel on top.
In the last two entries, the manufacturers (not the device owners!) would be rewarded with the 25% slice of the BTC mined by those embedded chips. As an example, the slides say that a manufacturer who produced one quarter of the embedded BitSplits would get the 25% cut on the BTC yield of those chips, that was estimated to be between 2 and 4 million dollars per year of revenue in 2015--2018. Those numbers are based on the following predicted mean BTC prices: $350 for 2015, $1000 for 2016, $2200 for 2017, and $5500 for 2018.
So, their main business plan was fantastic: the OEM and chipset makers would pay the costs of producing and integrating the chips, the consumers would pay the cost of operating them, and 21inc would get 75% of all BTC mined by them, expected to be worth 400 million dollars.
It makes sense to invest 100 million in that plan, right?
EDIT1: Sentence order, typos.
EDIT2: See also this comment below about other sources of this info and this comment about a fatal flaw of the PiTato mining chip.
EDIT3: See also this comment with the data from slide 2, "At a glance"
submitted by jstolfi to Buttcoin [link] [comments]

So you’ve got your miner working, busy hashing away … but what is it really doing?

Posted for eternity @ https://vertcoin.easymine.online/articles/mining
Your miner is repeatedly hashing (see below for detail about a hash) a block of data, looking for a resulting output that is lower than a predetermined target. Each time this calculation is performed, one of the fields in the input data is changed, and this results in a different output. The output is not able to be determined until the work is completed – otherwise why would we bother doing the work in the first place?
Each hash takes a block header (see more below, but basically this is a 80-byte block of data). It runs this through the hashing function, and what comes out is a 32-byte output. For each, we usually represent that output in hexadecimal format, so it looks something like:
5da4bcb997a90bec188542365365d8b913af3f1eb7deaf55038cfcd04f0b11a0 
(that’s 64 hexadecimal characters – each character represents 4-bits. 64 x 4 bits = 256bit = 32 bytes)
The maximum value for our hash is:
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 
And the lowest is:
0000000000000000000000000000000000000000000000000000000000000000 
The goal in Proof-of-Work systems is to look for a hash that is lower than a specific target, i.e. starts with a specific number of leading zeros. This target is what determines the difficulty.
As the output of the hash is indeterminate, we look to statistics and probability to estimate how much work (i.e. attempts at hashing) we need to complete to find a hash that is lower than a specific target. So, we can therefore assume that to find a hash that starts with a leading zero will take, on average, 16 hashes. To find one that will start with two leading zeros (00), we’re looking at 256 hashes. Four leading zeros (0000) will take 65,536 hashes. Eight leading zeros (00000000) takes 4,294,967,296 hashes. So on and so on, until we realize that it will take 2 ^ 256 (a number too big for me to show here) attempts at hitting our minimum hash value.
Remember – this number of hashes is just an estimate. Think of it like rolling a dice. A 16-sided dice. And then rolling it 64 times in a row. And hoping to strike a specific number of leading zeros. Sometimes it will take far less than the estimate, sometimes it will take far more. Over a long enough time period though (with our dice it may take many billions of years), the averages hold true.
Difficulty is a measure used in cryptocurrencies to simply show how much work is needed to find a specific block. A block of difficulty 1 must have a hash smaller than:
00000000FFFF0000000000000000000000000000000000000000000000000000 
A block of difficulty 1/256 (0.00390625) must have a hash lower than:
000000FFFF000000000000000000000000000000000000000000000000000000 
And a block of difficulty 256 must have a hash lower than:
0000000000FFFF00000000000000000000000000000000000000000000000000 
So the higher the difficulty, the lower the hash must be; therefore more work must be completed to find the block.
Take a recent Vertcoin block – block # 852545, difficulty 41878.60056944499. This required a hash lower than:
000000000001909c000000000000000000000000000000000000000000000000 
The achieve finding this, a single miner would need to have completed, on average 179,867,219,848,013 hashes (calculated by taking the number of hashes needed for a difficulty 1 block - 4,294,967,296 or 2 ^ 32 or 16 ^ 8 – and multiplied by the difficulty). Of course, our single miner may have found this sooner – or later – than predicted.
Cryptocurrencies alter the required difficulty on a regular basis (some like Vertcoin do it after every block, others like Bitcoin or Litecoin do it every 2016 blocks), to ensure the correct number of blocks are found per day. As the hash rate of miners increases, so does the difficulty to ensure this average time between blocks remains the same. Likewise, as hash rate decreases, the difficulty decreases.
With difficulties as high as the above example, solo-mining (mining by yourself, not in a pool) becomes a very difficult task. Assume our miner can produce 100 MH/s. Plugging in this into the numbers above, we can see it’s going to take him (on average) 1,798,673 seconds of hashing to find a hash lower than the target – that’s just short of 21 days. But, if his luck is down, it could easily take twice that long. Or, if he’s lucky, half that time.
So, assuming he hit’s the average, for his 21 days mining he has earned 25 VTC.
Lets take another look at the same miner, but this time he’s going to join a pool, where he is working with a stack of other miners looking for that elusive hash. Assume the pool he has joined does 50 GH/s – in that case he has 0.1 / 50 or 0.2% of the pool’s hash rate. So for any blocks the pool finds he should earn 0.2% of 25 VTC = 0.05 VTC. At 50 GH/s, the pool should expect to spend 3,597 seconds between finding blocks (2 ^ 32 * difficulty / hashrate). So about every hour, our miner can expect to earn 0.05 VTC. This works out to be about 1.2 VTC per day, and when we extrapolate over the estimated 21 days of solo mining above, we’re back to 25 VTC.
The beauty of pooled-mining over solo-mining is that the time between blocks, whilst they can vary, should be closer to the predicted / estimated times over a shorter time period. The same applies when comparing pools – pools with a smaller hash rate will experience a greater variance in time between blocks than a pool with a greater hash rate. But in the end, looking back over a longer period of time, earnings will be the same.
Hashes
A Hash is a cryptographic function that can take an arbitrary sized block of data and maps it to a fixed sized output. It is a one-way function – only knowing the input data can one calculate the output; the reverse action is impossible. Also, small changes to the input data usually result in significant changes to the output value.
For example, take the following string:
“the quick brown fox jumps over the lazy dog” 
If we perform a SHA256 hash of this, it results in:
05c6e08f1d9fdafa03147fcb8f82f124c76d2f70e3d989dc8aadb5e7d7450bec 
If we change a single character in the input string (in this case we will replace the ‘o’ in ‘over’ to a zero), the resulting hash becomes:
de492f861d6bb8438f65b2beb2e98ae96a8519f19c24042b171d02ff4dfecc82 
Blocks
A block is made up of a header, and at least one transaction. The first transaction in the block is called the Coinbase transaction – it is the transactions that creates new coins, and it specifies the addresses that those coins go to. The Coinbase transaction is always the first transaction in a block, and there can only be one. All other transactions included in a block are transactions that send coins from one wallet address to another.
The block header is an 80-byte block of data that is made up of the following information in this order:
  • Version – a 32-bit/4-byte integer
  • Previous Block’s SHA256d Hash – 32 bytes
  • Merkle Hash of the Transactions – 32 bytes
  • Timestamp - a 32-bit/4-byte integer the represents the time of the block in seconds past 1st January 1970 00:00 UTC
  • nBits - a 32-bit/4-byte integer that represents the maximum value of the hash of the block
  • Nonce - a 32-bit/4-byte integer
The Version of a block remains relatively static through a coin’s lifetime – most blocks will have the same version. Typically only used to introduce new features or enforce new rules – for instance Segwit adoption is enforced by encoding information into the Version field.
The Previous Blocks’ Hash is simple a doubled SHA256 hash of the last valid blocks header.
The Merkle Hash is a hash generated by chaining all of the transactions together in a hash tree – thus ensuring that once a transaction is included in a block, it cannot be changed. It becomes a permanent record in the blockchain.
Timestamp loosely represents the time the block was generated – it does not have to be exact, anywhere within an hour each way of the real time will be accepted.
nBits – this is the maximum hash that this block must have in order to be considered valid. Bitcoin encodes the maximum hash into a 4-byte value as this is more efficient and provides sufficient accuracy.
Nonce – a simple 4-byte integer value that is incremented by a miner in order to find a resulting hash that is lower than that specified by nBits.
submitted by nzsquirrell to VertcoinMining [link] [comments]

New people please read this. [upvote for visibility please]

I am seeing too many new people come and and getting confused. Litecoin wiki isn't the greatest when it comes to summing up things so I will try to do things as best as I can. I will attempt to explain from what I have learned and answer some questions. Hopefully people smarter than me will also chime in. I will keep this post updated as much as I can.
Preface
Litecoin is a type to electronic currency. It is just like Bitcoin but it there are differences. Difference explained here.
If you are starting to mine now chances are that you have missed the Bitcoin mining train. If you really want your time and processing power to not go to waste you should mine LTC because the access to BTC from there is much easier.
Mining. What is it?
Let's get this straight. When making any financial commitment to this be prepared to do it with "throw away" money. Mining is all about the hashrate and is measured in KH/s (KiloHash/sec). Unlike the powerful ASICs (Application Specific Integrated Circuit) that are used to mine bitcoins using hashrates in the GH/s and even TH/s, litecoin mining has only been able to achieve at the very best MH/s. I think the highest I've seen is 130 MH/s so far. Which leads us to our next section.
Mining Hardware
While CPU mining is still a thing it is not as powerful as GPU mining. Your laptop might be able to get 1 a month. However, I encourage you to consult this list first. List of hardware comparison You will find the highest of processors can maybe pull 100 KH/s and if we put this into a litecoin mining calculator it doesn't give us much.
Another reason why you don't want to mine with your CPU is pretty simple. You are going to destroy it.
So this leaves us with GPUs. Over the past few months (and years) the HD 7950 has been the favourite because it drains less power and has a pretty good hashrate. But recently the introduction of the R9 290 (not the x) has changed the game a bit. People are getting 850 KH/s - 900 KH/s with that card. It's crazy.
Should I mine?
Honestly given the current difficulty you can make a solid rig for about $1100 with a hashrate of 1700 KH/s which would give you your investment back in about a month and a half. I am sure people out there can create something for much cheaper. Here is a good example of a setup as suggested by dystopiats
PCPartPicker part list / Price breakdown by merchant / Benchmarks
Type Item Price
CPU AMD Sempron 145 2.8GHz Single-Core Processor $36.01 @ Amazon
Motherboard ASRock 970 EXTREME4 ATX AM3+ Motherboard $99.48 @ OutletPC
Memory Crucial Ballistix Tactical Tracer 4GB (1 x 4GB) DDR3-1866 Memory $59.99 @ Newegg
Video Card Sapphire Radeon HD 7950 3GB Video Card (3-Way CrossFire) $245.38 @ Newegg
Video Card Sapphire Radeon HD 7950 3GB Video Card (3-Way CrossFire) $245.38 @ Newegg
Video Card Sapphire Radeon HD 7950 3GB Video Card (3-Way CrossFire) $245.38 @ Newegg
Power Supply SeaSonic Platinum 860W 80+ Platinum Certified Fully-Modular ATX Power Supply $146.98 @ SuperBiiz
Total
Prices include shipping, taxes, and discounts when available. $1078.60
Generated by PCPartPicker 2013-11-29 00:52 EST-0500
Estimated Hashrate (with GPU overclocking) : 1900 KH/s
Hardware Fundamentals
CPU - Do you need a powerful CPU? No but make sure it is a decent one. AMD CPUs are cheap to buy right now with tons of power. Feel free to use a Sempron or Celeron depending on what Motherboard you go with.
RAM - Try to get at least 4 GB so as to not run into any trouble. Memory is cheap these days. I am saying 4 GB only because of Windoze. If you are plan to run this on Linux you can even get away with less memory.
HDD Any good ol 7200 RPM hard drive will do. Make sure it is appropriate. No point in buying a 1TB hard drive. Since, this is a newbie's guide I assumed most won't know how to run linux, but incase you do you can get a USB flash drive and run linux from it thus removing the need for hard drive all toghether. (thanks dystopiats)
GPU - Consult the list of hardware of hardware I posted above. Make sure you consider the KH/s/W ratio. To me the 290 is the best option but you can skimp down to 7950 if you like.
PSU - THIS IS BLOODY IMPORTANT. Most modern GPUs are power hungry so please make sure you are well within the limits of your power consumption.
MOTHERBOARD - Ok, so a pretty popular board right now is Gigabyte GA-990FXA-UD3 and the ASRock 970 Extreme4. Some people are even going for Gigabyte GA-990FXA-UD5 and even the mighty Gigabyte GA-990FXA-UD7 because it has more PCI-E slots. 6 to be exact. However you may not need that much. With risers you can get more shoved into less.
PCI-E RISERS - These are called risers. They come in x16 to x16 and x1 to x16 connections. Here is the general rule of thumb. This is very important. Always get a POWERED riser otherwise you will burn a hole in your MoBo. A powered rise as a molex connector so that additional power from PSU can be supplied.
When it comes to hardware I've provided the most basic knowledge you need. Also, take a look at cryptobader's website. This is very helpful. Please visit the mining section of Litecoin Forums and the litecoinmining subreddit for more indepth info.
Mining Software
Now that you have assembled your hardware now you need to get into a pool. But before you do that you need a mining software. There are many different ones but the one that is most popular is cgminer. Download it and make sure you read the README. It is a very robust piece of software. Please read this if you want to know more. (thanks BalzOnYer4Head)
Mining Pools
Now that your hardware and software is ready. I know nothing about solo mining other than the fact that you have to be very lucky and respectable amount of hashing power to decrypt a block. So it is better to join pools. I have been pool hopping for a bit and really liked give-me-coin previously known to the community as give-me-ltc. They have a nice mobile app and 0% pool fees. This is really a personal preference. Take a look at this list and try some yourself.
How do I connect to a pool?
Most pools will give you a tutorial on how to but the basics are as follows:
  • Signup for a pool
  • Create a worker for your account. Usually one worker per rig (Yes people have multiple rigs) is generally a good idea.
  • Create a .run file. Open up notepad and type cgminer.exe -o (address_to_the_miningpool:port_number) -u (yourusername.workername) -p (your_worker_password_if_you_made_one). Then File>Save As>runcgminer.run (Make sure the drop down is set to "All Files" and .txt document.) and save in the same folder as cgminer. That's it.
  • Double click on runcgminer.run (or whatever you named it) and have fun mining.
Mining Profitability
This game is not easy. If it was, practically everyone would be doing it. This is strictly a numbers game and there are calculations available that can help you determine your risk on your investments. 4 variables you need to consider when you are starting to mine:
Hardware cost: The cost of your physical hardware to run this whole operation.
Power: Measured in $/KwH is also known as the operating cost.
Difficulty rate: To put it in layman's terms the increase in difficulty is inversely proportional to amount of coin you can mine. The harder the difficulty the harder it is to mine coin. Right now difficulty is rising at about 18% per 3 days. This can and will change since all you miners are soon going to jump on the band wagon.
Your sanity: I am not going to tell you to keep calm and chive on because quiet frankly that is stupid. What I will tell you not to get too carried away. You will pull you hair out. Seriously.
Next thing you will need is a simple tool. A mining profitability calculator. I have two favourite ones.
coinwarz
I like this one cause it is simple. The fields are self explanatory. Try it.
bitcoinwisdom
I like this one because it is a more real life scenario calculator and more complicated one (not really). It also takes increasing difficulty into account.
Please note: This is the absolute basic info you need. If you have more questions feel free to ask and or google it!
More Below.
submitted by craeyon to litecoin [link] [comments]

Plz Help. Have I found a Discrepancy in Slush Pool?

I may have found a bad discrepancy in Slushpool's reporting... Can you guys cross-check it for me? I'm not happy to say this, and rather than accuse anyone, I'd just like to get some second opinions. If I'm wrong, I ask redditers to politely explain why this discrepancy appears to be happening. After all, maybe it's my math, or logic, or facts missing, etc... But if there is a discrepancy, it could affect major things like payouts, theoretically... and I mean in a major way... retroactive for years.
My concern starts with the average speed per worker of the bitcoin mining pool, on Slushpool.
As I write (12/26/17 Pacific time, around 11pm), Slushpool currently says it is running at 1.587 Eh/s. https://slushpool.com/dashboard/?c=btc
The website also says there are 62810 workers in the pool. I want to calculate the speed per worker. Speed per worker should be expressed in Th/s, so to reduce it to common terms, we need to convert the pool's global Eh/s to Th/s... which means to multiply the Eh/s by 10002... one thousand, squared.
The speed of Slushpool was 1.587 Eh/s, so we set it up like this: 1.587 * 1000 * 1000 = 1587000 Th/s. †
Now to get from Slush Pool's total Th/s to Slush Pool's average Th/s per worker, divide total by number of workers...
(1587000 th/s) / (62810 workers) = 25.26 Th/s per worker.
So I got the number I was looking for... excellent. You might say "Okay, interesting, so the average worker is mining at 25.26 Th/s. NP. Cool."... But what you SHOULD be doing here is asking HOW ON EARTH ANY WORKER IS MINING AT 25.26 TH/S, and even moreso how THE AVERAGE worker mining on Slush Pool is mining at that speed. The fastest miner on the market is the s9, and it mines at 14 Th/s. So how is the average miner on Slush Pool more so much faster than the very best miner on the market, today? The S9, The BEST MINER on the MARKET, today, is only 56% the speed of the AVERAGE miner on Slush pool.
Now, maybe somebody built a specialized frankenminer in a laboratory... maybe someone uncovreed a secret cache of Spondoolies SP50 miners... which was designed to mine at a whopping 110th/s, for example... but Spondoolies went bankrupt in 2016, and production was halted. Even before then, they didn't make too many sp50's, and they were restricted to special clients.
So... assuming it isn't legacy Spondoolies sp50's doing this mystery hashing, how else can we explain the high h/s on Slush Pool? Maybe someone got really good at overclocking... maybe they cooled the hell out of their miners, so they can run at super fast speeds. Would that really be enough to yield 25.26 Th/s? Is that credible? Is it possible or plausible? ... Even if some miners are achieving that incredibly blazing speed, would the AVERAGE miner be achieving it?
Don't forget about how the AVERAGE includes all these micro miners, as well... misfits like the u3, gridseed orb, blade miner, s1-s5, running in a dorm rooms, etc. There are hobby miners who would pull the average h/s (per miner) on Slush Pool down alot.
So, how is it possible that the pool is running at this speed? Better asked... IS it possible, and if so, how? And if it's not possible, then what are we looking at?
If the pool operator is overstating the total hashing power of the mining pool, then are payouts being reduced according to a false ratio, where the divisor in the ratio is artificially large? The payouts are based on that... they depend on it. So are the payouts on Slush Pool being artificially shrunken? If the total Eh/s of the pool is really much lower than what they say, then I'd have to suspect that it is. But I am absolutely NOT saying for certain that this is what's happening. It's what my suspicious anxiety closet suggests could be happening... but I really don't know. That's why I'm asking you guys to help sort this all out, and explain to me whether these concerns are misguided or not. I'm asking a question, here... not throwing accusations. Frankly I think it is more likely that I've made an error of some kind, either miscalculating or possibly unaware of some vital detail, than that the net's oldest and most respected mining pool is doing something like this. It is very likely there's a good explanation for the apparent discrepancy, but I do not know what it is... so again, I'm asking you, reddit, if you can evaluate this reasoning and comb it for flaws, math errors, weak factual assumptions, and/or whatever else might explain what I'm seeing, or if you can confirm the math and logic framed in the questions I've asked. Thanks everyone, and have a happy new year.
† (Here is a site which tells the relation) https://bitcoin.stackexchange.com/questions/9219/what-is-the-difference-between-kh-s-mh-s-and-gh-s/21498 (here is a site with a calculator which goes from E~ to T~. Although it does not have Eh/s and Th/s, you can use Ehenry to get the same mathematical result. https://www.translatorscafe.com/unit-converteen/inductance/5-4/gigahenry-terahenry/
submitted by mercucio007 to MiningPoolHub [link] [comments]

Bitcoin Tax Attorney here. I am around for discussion or questions related to Bitcoin Tax treatment, including tax planning opportunities for businesses and individuals.

Anyone have issues with their tax returns due to lots of Bitcoin usage or from the sale and disposition of Bitcoin? Anyone looking for any tax favorable planning opportunities? Either as an individual who sold a bunch for profit or for a business who has begun accepting Bitcoin for the first time.
My practice has focused on helping both individuals and businesses for Bitcoin tax related matters for much of this year. I am available for discussion here in the comments, and for more specific matters, please PM me.
I'm a tax attorney based in Los Angeles and big bitcoin fan and miner going way back. I've been lurking hear on bitcoin for years. I was a miner back in 2011-2013, build my own custom rigs with 6 Radeon 7970s.
Then I was among the first to receive a couple of BFL's 5 gh/s cubes and then one of the first 50 Gh/s. (I knew that was a lawsuit waiting to happen against BFL. Scoundrels) Good memories all around. I still have my spreadsheets keeping track of what I mined. Altogether, with the pools, I mined over 100 bitcoin. Alas, I sold many of them when the price was $300 or less.
All this time I was focusing on tax law, finishing Tax LLM courses in Los Angeles. So, it was inevitable that the two interests would merge. I ended up writing a proposal to treat Bitcoin as currency as opposed to property.
Here is a link to my paper on this which Tax Notes published as their cover story a few months back, which was completely unexpected but kinda cool to see this niche interest rewarded.
Paper: "Bitcoin: Property or Currency?" http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2708188
Got to go on a State Bar Delegation to DC to enlighten folks with the power to actually do something about it. Delegation met with IRS Chief Counsel, including people who drafted the Notice treating Bitcoin as property. Also folks from Treasury Dept, Senate Finance Committee, House Ways & Means, etc.
I urged for currency treatment (as opposed to property treatment) of Bitcoin and other cryptocurrencies, in fact anything built on the basis of the Blockchain meant as a mode to transact money.
If any of you guys had to do your taxes this year, and have bought and spent a lot of Bitcoin, or even just mined and sold, you probably know some of the difficulties I'm alluding to without even mentioning.
Should we really have to calculate capital gains/loss on the purchase of a cup of coffee at your neighborhood cryptocurrency friendly coffee shop, for example? Even with purchases at Overstock.com or Dell, you were technically supposed to calculate capital gains and losses and provide supporting backup on your tax returns this year.
What a practical and administrative nightmare for both taxpayers and for the IRS who has to wade through this. I feel like some of what I wrote got through to them. As we all know, government lags far behind emerging technologies. But they did seem genuinely interested, and I do not believe my paper and proposal fell upon deaf ears.
I have my own law office these days and work with or for many attorneys on various matters, just as I have a number of attorneys assist me. No such thing as a pure solo practitioner these days. No man can afford to be an island.
This tax year has been very rewarding and helped a great many tax clients with Bitcoin issues from anything to bookkeeping to strategic planning for the short-term as well as long-term.
Any accountant knows the terms LIFO and FIFO, but there's seemingly no hard and fast rules for measurement for when a particular bitcoin was bought and sold for purposes of calculating gains/losses. Also, no hard and fast rules as to where the particular market price of Bitcoin is found on a particular day.
Everything is loose, open to interpretation by the tax payer, and with strategic guidance, can prove incredibly tax favorable ultimately. It is wise for a business to accept Bitcoin for many reasons, including that broad opportunity for interpretation while staying true to the property guidance.
So, it is ultimately very taxpayer friendly due to this broad leeway. More than that, treating bitcoin and cryptocurrencies as property rather than currency is also taxpayer friendly by definition. Your bitcoin gains will only be taxed at your capital gains rate instead of as ordinary income, a higher rate.
I assisted a lot of individuals and even businesses who accepted bitcoin for the first time this year. I intended to post on /bitcoin before to offer my services and to also just allow people to send me questions, which I am happy to discuss in private for free.
I got pretty slammed up to tax day, but I'm free now. Just hit me up by private message or shoot me an email at thebitcoinlawyer at g mail.
Any questions or thoughts, I'll be around. I'm often around /bitcoin anyway. Love this community. And if I can serve as help for any of you, all the better. Thanks.
TL;DR Bitcoin Tax Attorney available for discussion on tax issues here in comments, or for more personalized issues, hit me up by PM
submitted by BitcoinTaxAttorney to Bitcoin [link] [comments]

The Concept of Bitcoin

The Concept of Bitcoin
https://preview.redd.it/5r9soz2ltq421.jpg?width=268&format=pjpg&auto=webp&s=6a89685f735b53ec1573eefe08c8646970de8124
What is Bitcoin?
Bitcoin is an experimental system of transfer and verification of property based on a network of peer to peer without any central authority.
The initial application and the main innovation of the Bitcoin network is a system of digital currency decentralized unit of account is bitcoin.
Bitcoin works with software and a protocol that allows participants to issue bitcoins and manage transactions in a collective and automatic way. As a free Protocol (open source), it also allows interoperability of software and services that use it. As a currency bitcoin is both a medium of payment and a store of value.
Bitcoin is designed to self-regulate. The limited inflation of the Bitcoin system is distributed homogeneously by computing the network power, and will be limited to 21 million divisible units up to the eighth decimal place. The functioning of the Exchange is secured by a general organization that everyone can examine, because everything is public: the basic protocols, cryptographic algorithms, programs making them operational, the data of accounts and discussions of the developers.
The possession of bitcoins is materialized by a sequence of numbers and letters that make up a virtual key allowing the expenditure of bitcoins associated with him on the registry. A person may hold several key compiled in a 'Bitcoin Wallet ', 'Keychain' web, software or hardware which allows access to the network in order to make transactions. Key to check the balance in bitcoins and public keys to receive payments. It contains also (often encrypted way) the private key associated with the public key. These private keys must remain secret, because their owner can spend bitcoins associated with them on the register. All support (keyrings) agrees to maintain the sequence of symbols constituting your keychain: paper, USB, memory stick, etc. With appropriate software, you can manage your assets on your computer or your phone.
Bitcoin on an account, to either a holder of bitcoins in has given you, for example in Exchange for property, either go through an Exchange platform that converts conventional currencies in bitcoins, is earned by participating in the operations of collective control of the currency.
The sources of Bitcoin codes have been released under an open source license MIT which allows to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the software, subject to insert a copyright notice into all copies.
Bitcoin creator, Satoshi Nakamoto
What is the Mining of bitcoin?
Technical details :
During mining, your computer performs cryptographic hashes (two successive SHA256) on what is called a header block. For each new hash, mining software uses a different random number that called Nuncio. According to the content of the block and the nonce value typically used to express the current target. This number is called the difficulty of mining. The difficulty of mining is calculated by comparing how much it is difficult to generate a block compared to the first created block. This means that a difficulty of 70000 is 70000 times more effort that it took to Satoshi Nakamoto to generate the first block. Where mining was much slower and poorly optimized.
The difficulty changes each 2016 blocks. The network tries to assign the difficulty in such a way that global computing power takes exactly 14 days to generate 2016 blocks. That's why the difficulty increases along with the power of the network.
Material :
In the beginning, mining with a processor (CPU) was the only way to undermine bitcoins. (GPU) graphics cards have possibly replaced the CPU due to their nature, which allowed an increase between 50 x to 100 x in computing power by using less electricity by megahash compared to a CPU.
Although any modern GPU can be used to make the mining, the brand AMD GPU architecture has proved to be far superior to nVidia to undermine bitcoins and the ATI Radeon HD 5870 card was the most economical for a time.
For a more complete list of graphics cards and their performance, see Wiki Bitcoin: comparison of mining equipment
In the same way that transition CPU to GPU, the world of mining has evolved into the use of the Field Programmable Gate Arrays (FPGA) as a mining platform. Although FPGAs did not offer an increase of 50 x to 100 x speed of calculation as the transition from CPU to GPU, they offered a better energy efficiency.
A typical HD/s 600 graphics card consumes about 400w of power, while a typical FPGA device can offer a rate of hash of 826 MH/s to 80w of power consumption, a gain of 5 x more calculations for the same energy power. Since energy efficiency is a key factor in the profitability of mining, it was an important step for the GPU to FPGA migration for many people.
The world of the mining of bitcoin is now migrating to the Application Specific Integrated Circuit (ASIC). An ASIC is a chip designed specifically to accomplish a single task. Unlike FPGAs, an ASIC is unable to be reprogrammed for other tasks. An ASIC designed to undermine bitcoins cannot and will not do anything else than to undermine bitcoins.
The stiffness of an ASIC allows us to offer an increase of 100 x computing power while reducing power consumption compared to all other technologies. For example, a classic device to offer 60 GH/s (1 hashes equals 1000 Megahash. 1GH/s = 1000 Mh/s) while consuming 60w of electricity. Compared to the GPU, it is an increase in computing power of 100 x and a reduction of power consumption by a factor of 7.
Unlike the generations of technologies that have preceded the ASIC, ASIC is the "end of the line" when we talk about important technology change. The CPUs have been replaced by the GPUs, themselves replaced by FPGAs that were replaced by ASICs.
There is nothing that can replace the ASICs now or in the immediate future. There will be technological refinements in ASIC products, and improvements in energy efficiency, but nothing that may match increased from 50 x to 100 x the computing power or a 7 x reduction in power consumption compared with the previous technology.
Which means that the energy efficiency of an ASIC device is the only important factor of all product ASIC, since the estimated lifetime of an ASIC device is superior to the entire history of the mining of bitcoin. It is conceivable that a purchased ASIC device today is still in operation in two years if the unit still offers a profitable enough economic to keep power consumption. The profitability of mining is also determined by the value of bitcoin but in all cases, more a device has a good energy efficiency, it is profitable.
Software :
There are two ways to make mining: by yourself or as part of a team (a pool). If you are mining for yourself, you must install the Bitcoin software and configure it to JSON-RPC (see: run Bitcoin). The other option is to join a pool. There are multiple available pools. With a pool, the profit generated by any block generated by a member of the team is split between all members of the team. The advantage of joining a team is to increase the frequency and stability of earnings (this is called reduce the variance) but gains will be lower. In the end, you will earn the same amount with the two approaches. Undermine solo allows you to receive earnings huge but very infrequent, while miner with a pool can offer you small stable and steady gains.
Once you have your software configured or that you have joined a pool, the next step is to configure the mining software. The software the most populare for ASIC/FPGA/GPU currently is CGminer or a derivative designed specifically for FPGAS and ASICs, BFGMiner.
If you want a quick overview of mining without install any software, try Bitcoin Plus, a Bitcoin minor running in your browser with your CPU. It is not profitable to make serious mining, but it is a good demonstration of the principle of the mining team.
submitted by Josephbitcoin to u/Josephbitcoin [link] [comments]

Bitcoin Mining & The Beauty Of Capitalism

Authored by Valentin Schmid via The Epoch Times,
While the price of bitcoin drops, miners get more creative... and some flourish.
The bitcoin price is crashing; naysayers and doomsayers are having a field day. The demise of the dominant cryptocurrency is finally happening — or is it?
Bitcoin has been buried hundreds of times, most notably during the brutal 90 percent decline from 2013 to 2015. And yet it has always made a comeback.
Where the skeptics are correct: The second bitcoin bubble burst in December of last year and the price is down roughly 80 percent from its high of $20,000. Nobody knows whether and when it will see these lofty heights again.
As a result, millions of speculators have been burned, and big institutions haven’t showed up to bridge the gap.
This also happened on a smaller scale in 2013 after a similar 100x run-up, and it was necessary.

Time to Catch Up

What most speculators and even some serious proponents of the independent and decentralized monetary system don’t understand: Bitcoin needs these pauses to make improvements in its infrastructure.
Exchanges, which could not handle the trading volumes at the height of the frenzy and did not return customer service inquiries, can take a breather and upgrade their systems and hire capable people.
The technology itself needs to make progress and this needs time. Projects like the lightning network, a system which delivers instant bitcoin payments at very little cost and at virtually unlimited scale is now only available to expert programmers.
A higher valuation is only justified if these improvements reach the mass market.
And since we live in a world where everything financial is tightly regulated, for better or worse, this area also needs to catch up, since regulators are chronically behind the curve of technological progress.
And of course, there is bitcoin mining. The vital infrastructure behind securing the bitcoin network and processing its transactions has been concentrated in too few hands and in too few places, most notably China, which still hosts about 70 percent of the mining capacity.

The Case For Mining

Critics have always complained that bitcoin mining consumes “too much” electricity, right now about as much as the Czech Republic. In energy terms this is around 65 terawatt hours or 230,000,000 gigajoules, costing $3.3 billion dollars according to estimates by Digiconomist.
For the non-physicists among us, this is around as much as consumed by six million energy-guzzling U.S. households per year.
All those estimates are imprecise because the aggregate cannot know how much energy each of the different bitcoin miners consumes and how much that electricity costs. But they are a reasonable rough estimate.
So it’s worth exploring why mining is necessary to begin with and whether the electricity consumption is justified.
Anything and everything humans do consumes resources. The question then is always: Is it worth it? And: Who decides?
This question then leads to the next question: Is it worth having and using money? Most people would argue yes, because using money instead of barter in fact makes economic transactions faster and cheaper and thus saves resources, natural and human.

_Merchants exchange goods with the inhabitants of Tidore, Indonesia, circa 1550. Barter was supplanted by using money because it is more efficient. (Archive/Getty Images)_If we are generously inclined, we will grant bitcoin the status of a type of money or at least currency as it meets the general requirements of being recognizable, divisible, portable, durable, is accepted in exchange for other goods and services, and in this case it is even limited in supply.
So having any type of money has a price, whether it’s gold, dollar bills, or numbers on the screen of your online banking system. In the case of bitcoin, it’s the electricity and the capital for the computing equipment, as well as the human resources to run these operations.
If we think having money in general is a good idea and some people value the decentralized and independent nature of bitcoin then it would be worth paying for verifying transactions on the bitcoin network as well as keeping the network secure and sound: Up until the point where the resources consumed would outweigh the efficiency benefits. Just like most people don’t think it’s a bad idea to use credit cards and banks, which consume electricity too.
However, bitcoin is a newcomer and this is why it’s being scrutinized even more so than the old established players.

Different Money, Different Costs

How many people know how much electricity, human lives, and other resources gold mining consumes or has consumed in the course of history? What about the banking system? Branches, servers, air-conditioning, staff? What about printing dollar notes and driving them around in armored trucks?
What about the social effects of monetary mismanagement of bank and government money like inflation as well as credit deflations? Gold gets a pass here.
Most people haven’t asked that question, which is why it’s worth pointing out the only comprehensive study done on the topic in 2014. In “An Order of Magnitude” the engineer Hass McCook analyzes the different money systems and reaches mind-boggling conclusions.
The study is a bit dated and of course the aggregations are also very rough estimates, but the ball park numbers are reasonable and the methodology sound.
In fact, according to the study, bitcoin is the most economic of all the different forms of money.
Gold mining in 2014 used 475 million GJ, compared to bitcoin’s 230 million in 2018. The banking system in 2014 used 2.3 billion gigajoules.
Over 100 people per year die trying to mine gold. But mining costs more than electricity. It consumes around 300,000 liters of water per kilogram of gold mined as well as 150 kilogram (330 pounds) of cyanide and 1500 tons of waste and rubble.
The international banking system has been used in all kinds of fraudulent activity throughout history: terrorist financing, money laundering, and every other criminal activity under the sun at a cost of trillions of dollars and at an order of magnitude higher than the same transactions done with cryptocurrency and bitcoin.
And of course, while gold has a relatively stable value over time, our bank and government issued money lost about 90 percent of its purchasing power over the last century, because it can be created out of thin air. This leads to inflation and a waste of physical and human resources because it distorts the process of capital allocation.

_The dollar has lost more than 90 percent of its value since the creation of the Federal Reserve in 1913. (Source: St. Louis Fed)_This is on top of the hundreds of thousands of bank branches, millions of ATMs and employees which all consume electricity and other resources, 10 times as much electricity alone as the bitcoin network.
According to monetary philosopher Saifedean Ammous, author of “The Bitcoin Standard,” the social benefit of hard money, i.e. money that can’t be printed by government decree, cannot even be fathomed; conversely, the true costs of easy money—created by government fiat and bank credit—are difficult to calculate.
According to Ammous, bitcoin is the hardest money around, even harder than gold because its total supply is capped, whereas the gold supply keeps increasing at about 1-2 percent every year.
“Look at the era of the classical gold standard, from 1871, the end of the Franco–Prussian War, until the beginning of World War I. There’s a reason why this is known as the Golden Era, the Gilded Age, and La Belle Epoque. It was a time of unrivaled human flourishing all over the world. Economic growth was everywhere. Technology was being spread all over the world. Peace and prosperity were increasing everywhere around the world. Technological innovations were advancing.
“I think this is no coincidence. What the gold standard allowed people to do is to have a store of value that would maintain its value in the future. And that gave people a low time preference, that gave people the incentive to think of the long term, and that made people want to invest in things that would pay off over the long term … bitcoin is far closer to gold. It is a digital equivalent of gold,” he said in an interview with The Epoch Times.
Of course, contrary to the gold standard that Ammous talks about, bitcoin doesn’t have a track record of being sound money in practice. In theory it meets all the criteria, but in the real world it hasn’t been adopted widely and has been so volatile as to be unusable as a reliable store of value or as the underlying currency of a productive lending market.
The proponents argue that over time, these problems will be solved the same way gold spread itself throughout the monetary sphere replacing copper and seashells, but even Ammous concedes the process may take decades and the outcome is far from certain. Gold is the safe bet for sound money, bitcoin has potential.
There is another measure where bitcoin loses out, according to a recent study by researchers from the Oak Ridge Institute in Cincinnati, Ohio.
It is the amount of energy expended per dollar for different monetary instruments. One dollar worth of bitcoin costs 17 megajoules to mine versus five for gold and seven for platinum. But the study omits the use of cyanide, water, and other physical resources in mining physical metals.
In general, the comparisons in dollar terms go against bitcoin because it is worth relatively less, only $73 billion in total at the time of writing. An issue that could be easily fixed at a higher price, but a higher price is only justified if the infrastructure improves, adoption increases, volatility declines, and the network proves its resilience to attacks over time.
In the meantime, market participants still value the fact they can own a currency independent of the government, completely digital, easily fungible, and limited in supply, and relatively decentralized. And the market as a whole is willing to pay a premium for these factors reflected in the higher per dollar prices for mining bitcoin.

The Creativity of Bitcoin Mining

But where bitcoin mining lacks in scale, it makes up for it in creativity.
In theory—and in practice—bitcoin mining can be done anywhere where there is cheap electricity. So bitcoin mining operations can be conducted not where people are (banking) or where government is (fiat cash) or where gold is (gold mining)—it can be done everywhere where there is cheap electricity
Some miners are flocking to the heat of the Texan desert where gas is virtually available for free, thanks to another oil revolution.
Other miners go to places where there is cheap wind, water, or other renewable energy.
This is because they don’t have to build bank branches, printing presses, and government buildings, or need to put up excavators and conveyor belts to dig gold out of the ground.
All they need is internet access and a home for the computers that look like a shipping container, each one of which has around 200 specialized bitcoin mining computers in them.
“The good thing about bitcoin mining is that it doesn’t matter where on earth a transaction happens, we can verify it in our data center here. The miners are part of the decentralized philosophy of bitcoin, it’s completely independent of your location as well,” said Moritz Jäger, chief technology officer at bitcoin Mining company Northern Bitcoin AG.

Centralized Mining

But so far, this decentralization hasn’t worked out as well as it sounds in theory.
Because Chinese local governments had access to subsidized electricity, it was profitable for officials to cut deals with bitcoin mining companies and supply them with cheap electricity in exchange for jobs and cutbacks. Sometimes the prices were as low as 2 dollar cents to 4 dollar cents per kilowatt hour.
This is why the majority of bitcoin mining is still concentrated in China (around 70 percent) where it was the most profitable, but only because the Chinese central planners subsidized the price of electricity.
This set up led to the by and large unwanted result that the biggest miner of bitcoin, a company called Bitmain, is also the biggest manufacturer of specialized computing equipment for bitcoin mining. The company reported revenues of $2.8 billion for the first half of 2018.

Tourists walk on the dunes near a power plant in Xiangshawan Desert in Ordos of Inner Mongolia, in this file photo. bitcoin miners have enjoyed favorable electricity rates in places like Ordos for a long time. (Feng Li/Getty Images)Centralized mining is a problem because whenever there is one player or a conglomerate of players who control more than 50 percent of the network computing power, they could theoretically crash the network by spending the same bitcoin twice, the so called “double spending problem.“
They don’t have an incentive to do so because it would probably ruin the bitcoin price and their business, but it’s better not to have to rely on one group of people controlling an entire money system. After all, we have that exact same system with central banking and bitcoin was set up as a decentralized alternative.
So far, no player or conglomerate ever reached that 51 percent threshold, at least not since bitcoin’s very early days, but many market participants always thought Bitmain’s corner of the market is a bit too close for comfort.
This favorable environment for Chinese bitcoin mining has been changing with a crack down on local government electricity largess as well as a crackdown on cryptocurrency.
Bitcoin itself and mining bitcoin remain legal in China but cryptocurrency exchanges have been banned since late 2017.
But more needs to be done for bitcoin to become independent of the caprice of a centralized oppressive regime and local government bureaucrats.

Northern Bitcoin Case Study

Enter Northern Bitcoin AG. The company isn’t the only one which is exploring mining opportunities with renewable energies in locations other than China.
But it is special because of the extraordinary set up it has for its operations, the fact that it is listed on the stock exchange in Germany, and the opportunities for scaling it discovered.
The operations of Northern Bitcoin combine the beauties of bitcoin and capitalism in one.
Like Texas has a lot of oil and free gas and it makes sense to use the gas rather than burn it, Norway has a lot of water, especially water moving down the mountains due to rainfall and melting snow.
And it makes sense to use the power of the movement of the water, channel it through pipes into generators to create very cheap and almost unlimited electricity. Norway generates north of 95 percent of its total electricity from hydropower.

A waterfall next to a hydropowerplant near Sandane, Norway, Oct. 25, 2018. (Valentin Schmid/The Epoch Times)Capitalism does not distinguish between renewable and fossil. It uses what is the most expedient. In this case, it is clearly water in Norway, and gas in Texas.
As a side note on the beauties of real capital and the fact that capital and the environment need not be enemies, the water in one of the hydropowerplants close to the Northern Bitcoin facility is piped through a generator made in 1920 by J.M. Voith AG, a company from Heidenheim Germany.
The company was established in 1867 and is still around today. The generator was produced in 1920 and is still producing electricity today.

Excess Power

In the remote regions of Northern Norway, there aren’t that many people or industry who would use the electricity. And rather than transport it over hundreds of miles to the industrial centers of Europe, the industries of the future are moving to Norway to the source of the cheap electricity.
Of course, it is not just bitcoin mining, but other data and computing heavy operations like server farms for cloud computing that can be neatly packaged into one of those containers and shipped up north.
“The containers are beautiful. They are produced in the middle of Germany where the hardware is enabled and tested. Then we put it on a truck and send it up here. When the truck arrives on the outside we lift it on the container vehicle. Two hours after the container arrives, it’s in the container rack. And 40 hours later we enable the cooling, network, power, other systems, and it’s online,” said Mats Andersson, a spokesman for the Lefdal Mine data center in Måløy, Norway, where Northern Bitcoin has its operations. Plug and play.

A Northern Bitcoin data container inside the Lefdal Mine data center, in Måløy, Norway. (Northern Bitcoin)If the cheap electricity wasn’t enough—around 5 cents per kilowatt hour compared to 17 cents in Germany—Norway also provides the perfect storage for these data containers, which are normally racked up in open air parks above the ground.
Also here, the resource allocation is beautiful. Instead of occupying otherwise useful and beautiful parcels of land and nature, the Northern Bitcoin containers and others are stored in the old Lefdal olivine mine.
Olivine is a mineral used for steel production and looks green. Very fitting. Hence also the name of the data center: Lefdal Mine.
“We take the green mineral out and we take the green IT in,” said Andersson.

Efficiency, Efficiency

Using the old mine as storage for the data center makes the whole process even more resource efficient.
Why? So far, we’ve only been talking about bitcoin mining using a lot of energy. But what for? Before you have actually seen the process in action—and it is similar for other computing operations—you cannot imagine how bizarre it is.
Most of the electricity is used to prevent the computers from overheating. So it’s not even the processors themselves; it’s the fans which cool the computer that use the most juice.
This is where the mine helps, because it’s rather cool 160 meters (525 feet) below sea level; certainly cooler than in the Texas desert.
But it gets even better. On top of the air blow-cooling the computer, the Lefdal data center uses a fresh water system to pump through the containers in pipes.
The fans can then circulate air over the cool pipes which transfer the heat to the water. One can feel the difference when touching the different pipes.
The fresh water closed circle loop then completes the “green” or resource efficiency cycle by transferring its heat to ice cold water from the nearby Fjord.
The water is sucked in through a pipe from the Fjord, the heat gets transferred without the water being mixed, and the water flows back to the Fjord, without any impact on the environment.
To top it all off, the mine has natural physical security far better than open air data centers and is even protected from an electromagnetic pulse blast because it’s underground.

_The Nordfjord near Måløy, Norway. The Lefdal data center takes the cold water from the fjord and uses it to cool the computer inside the mine. (Valentin Schmid/The Epoch Times)_Company Dynamics

Given this superlative set up, Northern Bitcoin wants to ramp up production as fast as possible at the Lefdal mine and other similar places in Norway, which have more mountains where data centers can be housed.
At the moment, Northern Bitcoin has 15 containers with 210 mining machines each. The 15 containers produce around 5 bitcoin per day at a total cost of around $2,500 dollars at the end of November 2018 and after the difficulty of solving the math problems went down by ~17 percent.
Most of it is for electricity; the rest is for leasing the containers, renting the mine space, buying and writing off the mining computers, personnel, overhead, etc.
Even at the current relatively depressed prices of around $4000, that’s a profit of $1500 per bitcoin or $7,500 per day.
But the goal is to ramp it up to 280 containers until 2019, producing 100 bitcoin per day. Again, the company is in the sweet spot to do this.
As opposed to the beginning of the year when one could not procure a mining computer from Bitmain even if one’s life depended on it, the current bear market has made them cheap and relatively available both new and second had from miners who had to cease operations because they can’t produce at low bitcoin prices.

Northern Bitcoin containers inside the Lefdal Mine data center in Måløy, Norway. (Northern Bitcoin)What about the data shipping containers? They are manufactured by a company called Rittal who is the world market leader. So it helps that the owner of Rittal also owns 30 percent of the Lefdal mine, providing preferential access to the containers.
Northern Bitcoin said it has enough capital available for the intermediate goal of ramping up to 50 containers until the end of year but may tap the capital markets again for the next step.
The company can also take advantage of the lower German corporate tax rate because revenue is only recorded when the bitcoin are sold in Germany, not when they are mined in Norway.
Of course, every small-cap stock—especially bitcoin companies—have their peculiarities and very high risks. As an example, Northern Bitcoin’s financial statements, although public, aren’t audited.
The equipment in the Lefdal mine in Norway is real and the operations are controlled by the Lefdal personnel, but one has to rely on exclusive information from the company for financials and cost figures, so buyer beware.

Norway Powerhouse?

Northern Bitcoin wants to have 280 containers, representing around 5 percent of the network’s computing power.
But the Lefdal mine alone has a capacity to power and cool 1,500 containers in a 200 megawatt facility, once it is fully built out.
“Here you have all the space, power, and cooling that you need. … Here you can grow,” said Lefdal’s Andersson.

A mine shaft in the Lefdal Mine data center in Måløy, Norway. The whole mine will have a capacity for 1500 containers once fully built out. (Valentin Schmid/The Epoch Times)The Norwegian government was behind an initiative to bring computing power to Norway and make it one of the prime destinations for data centers at the beginning of this decade.
To that effect, the local governments own part of the utility companies which operate the power plants and own part of the Lefdal Mine and other locations. But even without notable subsidies (i.e. cash payments to companies), market players were able to figure it out, for everybody’s benefit.
The utilities win because they can sell their cheap electricity close to home. The computing companies like IBM and Northern Bitcoin win because they can get cheap electricity, storage, and security. Data center operators like Lefdal win because they can charge rent for otherwise unused and unneeded space.
However, in a recent about face, the central government in Oslo has decided to remove cryptocurrency miners from the list of companies which pay a preferential tax rate on electricity consumption.
Normally, energy intensive companies, including data centers, pay a preferential tax on electricity consumed of 0.48 øre ($0.00056 ). According to a report by Norwegian media Aftenposten, this tax will rise to 16.58 øre ($0.019) in 2019 for cryptocurrency miners exclusively.
The argument by left wing politician Lars Haltbrekken who sponsored the initiative: “Norway cannot continue to provide huge tax incentives for the most dirty form of cryptocurrency output […] [bitcoin] requires a lot of energy and generates large greenhouse gas emissions globally.”
Since Norway generates its electricity using hydro, precisely the opposite is true: No greenhouse gas emissions, or any emissions for that matter would be produced, if all cryptomining was done in Norway. As opposed to China, where mining is done with coal and with emissions.
But not only in Norway is the share of renewable and emission free energy high. According to research by Coinshares, Bitcoin’s consumes about 77.6 percent of its energy in the form of renewables globally.
However self-defeating the arguments against bitcoin mining in Norway, the political initiative is moving forward. What it means for Northern Bitcoin is not clear, as they house their containers in Lefdal’s mixed data center, which also has other clients, like IBM.
“It’s not really decided yet; there are still big efforts from IT sectors and parties who are trying to change it. If the decision is taken it might apply for pure crypto sites rather than mixed data centers, like ours,” said Lefdal’s Andersson.
Even in the worst-case scenario, it would mean an increase from ~5 cents to ~6.9 cents per kilowatt hour, or 30 percent more paid on the electricity by Northern Bitcoin, which at ~$3250 would still rank it among the most competitive producers in the world.
Coinshares estimates the average production price at $6,800 per Bitcoin at $0,05 per kilowatt hour of electricity and an 18-months depreciation schedule, but concedes that a profitable miner could “[depreciate] mining gear over 24-30 months, or [pay] less for mining gear than our estimates.”
Jäger says Northern Bitcoin depreciates the equipment over three years and has obtained very favorable prices from Bitmain, making its production much more competitive than the average despite the same cost of electricity. In addition, the natural cooling in the mine also reduces electricity costs overall.

Cheap Producer Advantage

At the moment, however, the tax could be the least of any miners worry, as the bitcoin price is in free-fall.
But what happens when the price crashes further? Suffice it to say that there was bitcoin mining when the dollar price was less than 1 cent and there will be bitcoin mining at lower prices thanks to the design of the network.
Mao Shixing, the founder of mining pool F2pool estimated 600,000 miners have shut down since the November crash in price, according to a report by Coindesk.
As it should be in a competitive system, the most energy intensive and obsolete machines are shut down first.
As with every other commodity, when the price drops, some miners will leave the market, leaving space for cheaper competitors to capture a bigger share. But with bitcoin this is a bit simpler than with copper or gold for example.
When a big copper player goes bankrupt, its competitors have to ramp up production and increase cost to increase their market share. With bitcoin, if 3,000 computers get taken off the total mining pool, they won’t be able to mine the approximately 5 bitcoin any longer.
However, because the difficulty of solving the computationally intensive cryptographic tasks of bitcoin decreases automatically when there are fewer computers engaged in the task, the other players just have to leave their machines running at the same rate for the same cost and they will split the 5 bitcoin among them.
“The moment the price goes down, our production price will go down as well,” said Jäger, a process that already happened from November to December when the difficulty decreased twice in November and the beginning of December.
This naturally favors players like Northern Bitcoin, which are producing at the lower end of the cost spectrum. They will be the ones who shut down last.
And this is a good thing. The more companies like Northern Bitcoin, and countries like Norway—even with the extra tax—the more decentralized the bitcoin system.
The more computers there are in different hands mining bitcoin, the more secure the system becomes, because it will be ever more difficult for one player to reach the 50 percent threshold to crash the system. It is this decentralized philosophy which has kept the bitcoin system running for 10 years. Whether at $1 or $20,000.
submitted by rotoreuters to zerohedge [link] [comments]

Hvem miner her?

Jeg var lige inde og kigge på CoinWarz mining calculator med udgangspunkt i en Antminer S7 der giver 4.3 th/s for 1350 watt.
Slog gennemsnitlig strømpris op på strøm.dk og det var 2,29 dkKwh eller $0.33.
Mining calculatoren siger profit efter pool fees og strøm er $12.902 eller godt 90.000 kr. årligt. Det kan ikke passe – Er der nogen som kan lure hvad der er galt i mit regnestykke? Jeg troede egentligt at man som udgangspunkt mistede penge på at mine i Danmark med vores strømpriser.
Edit: Havde et 0 for meget bag Gh/s værdien. Efter jeg rettede det blev resultatet i stedet $-2.200 per år.
submitted by ElectricOrangeJuice to BitcoinDK [link] [comments]

At what price will Bitcoin fail to function? My estimate: ~$100.

I'll begin with my conclusions:
If the Bitcoin network consisted solely of 'Titanium ASIC' miners, the most powerful and energy efficient mining machine I know of, then the price point at which electricity costs begins to exceed rewards is $71/BTC (based on yesterday's network figures; more on that later). More realistically though, most miners aren't running highly efficient Titanium ASICs, hence I estimate ~$100/BTC as the turning point.
I say 'fail to function' in my title, because who will continue to mine at a pure loss? It would be irrational - the rational action would be turn off the machine until the value of the rewards increases. Note: This is not the same as sunk costs in buying hardware - because in that case even if you never get back how much you paid, you're still making something.
Perhaps, you might counter, Bitcoin enthusiasts will continue to mine at a loss. Well consider this: To sustain just 1% of the current network hash rate, you would require 559 Titanium ASICs costing over one million dollars in yearly electricity cost (at $0.10/kWh) - and that's a best case scenario.
Let's assume that's the case - you have Bitcoin Enthusiasts contributing the equivalent of 559 Titanium ASICs hashing power for free out of their pocket. That's a 99% drop in hash rate. The time to a difficulty retarget is 2016 blocks, or at 10minutes/block that's 2 weeks. But if the hash rate were to drop by 99% within that two week period, then the block time would balloon out to 16.66 hours - making the block retarget ETA up to 3.8 years!
If transactions took 16.66 hours just to get a single confirmation (if they had first priority), then how would use of Bitcoin remain practically feasible? Would people still have confidence in the system and the developers for allowing this to happen? How difficult or costly would it be to launch a 51% attack?
Now, on to the calculations, and a few less optimistic alternate scenarios:
Network hash rate at time of calculation: 335,365,290.09 GH/s
335,365,290.09 GH/s / 6000GH/s = 55894.215 'Titanium ASIC' miners
55894.215 x $5.28 daily electricity cost (At $0.10/kWh) = $295121.4552/day in electricity costs
= $1776.87709485/block (avg. time of 8.67 minutes)
$1776.87709485 / 25BTC block reward = $71.04/BTC = break even point.
The above does not account for pool fees or transaction fee revenue or more importantly variance in kWh rates ($0.10/kWh is nonetheless pretty low worldwide), and hardware cost is irrelevant to this calculation.
Without doing all the math again, here's some other popular mining machines for comparison:
$113.07 (SP35 Yukon)
$193.84 (CoinTerra TerraMiner IV)
$385.89 (Antminer S1)
I've also just seen the 'Antminer S4' mentioned in /Bitcoin, so just for comparison a Titanium ASIC is almost twice as energy efficient as an Antiminer S4 (2200W vs. 4200W for 6TH/s) - it's less efficient than the SP35 Yukon.
If I've made any miscalculations here or have left anything important out, feel free to correct me.
submitted by Josh_Garza to Buttcoin [link] [comments]

I did the maths for Antminer S3 Potential earnings and it doesn't look very good.

Antminer S3
Constants-
Electric cost: $0
Pool Fee: 0%
Hash Rate: 478 Gh/s Per Bitmain
1 BTC: $640.00
Hardware cost: $480.00 (.75BTC)
Start date: 7/15/2014 (~soonest reasonable delivery date)
Difficulty @ 12% Break even: 78 days, 0.655 BTC ($425.60) mined @ 280 days (~9 months & 10 days) -
A total of +0.796BTC ($509.44) over cost will be mined in 3 years & 3 months - 10/31/2017
Difficulty @ 15% Break even: 90 days, 0.402 BTC ($257.28) mined @ 280 days (~9 months & 10 days) -
A total of +0.463BTC ($296.32) over cost will be mined in 3 years & 3 months - 10/31/2017
Difficulty @ 18% Break even: 111 days, 0.213 BTC ($136.32) mined @ 280 days (~9 months & 10 days) -
A total of +0.242BTC ($154.88) over cost will be mined in 3 years & 3 months - 10/31/2017
Difficulty @ 20% Break even: 135 days, 0.115 BTC ($ 73.60) mined @ 280 days (~9 months & 10 days) -
A total of +0.131BTC ($ 83.84) over cost will be mined in 3 years & 3 months - 10/31/2017
Difficulty @ 22% Break even: 191 days, 0.030 BTC ($ 19.20) mined @ 280 days (~9 months & 10 days) -
A total of +0.041BTC ($ 26.24) over cost will be mined in 3 years & 3 months - 10/31/2017
Difficulty @ 24% In 280 days still need to mine 0.04109BTC before breaking even,
In 1206 days Still need to mine 0.03509BTC before breaking even - 10/31/2017
Ref: https://bitcoinwisdom.com/bitcoin/calculator
The only way it would be worth buying an S3 is if you were very optimistic that the difficulty is going to be low over the next 3+ years.
Good luck with that.
NOTE: All numbers approximate / rounded
submitted by HypnoticGuy to Bitcoin [link] [comments]

H2O Mining Contract for Bitcoin Cash

The payout for the BCH contract is as follows (based on the mining portal figures):
1 H2O = 3.72 GH/s (Multiply your H2O tokens * 3.72 to get you hash power)
Profits At Current Difficulty
submitted by notyouagain2 to hydrominer [link] [comments]

Ever wonder what those numbers mean? The relationship between difficulty, shares, hashrate, etc. explained.

After being confused for a long time myself, I went and crunched some figures, and found out where all those numbers came from. To save fellow shibes from having to do the same, I'm making this guide.
First of all, what is difficulty? It is a number d such that the expected number of hashes required to find a block is d * 232. That is to say, the individual probability of each hash finding a block is 1 / (d * 232 ). (You can read up on how a geometric distribution based on a Bernoulli random variable of probability p has a mean of 1/p.) So if the difficulty is 1, then a valid hash would require 32 binary zeros at the beginning (usually represented as 8 zeros in hex). If the difficulty is 1024, then 32 + 10 = 42 binary zeros are required. For a difficulty that's not a power of two, you're going to have an odd mix (e.g. the first digits of the hex must be less than 000000000c8.)
Now how is difficulty calculated? For Dogecoin, difficulty is recalibrated every 240 blocks. It is adjusted so that a block would be found every minute, on average. Example: The average hashrate was 100 GH/s over the last 240 blocks. We want a block found every 60 seconds, or every 1011 * 60 = 6 x 1012 hashes. So d = 6 x 1012 / 232 = 1397, and the difficulty will be set to 1397.
The pool difficulty (also known as share difficulty) is a closely related concept. It is up to the pool operator, but almost all define it as being difficulty * 216. That is, pool difficulty is a number d' such that the expected number of hashes required to find a share on the pool is d' * 216 (since 32 - 16 = 16). It is basically there for notational convenience, because no one wants to talk about mining at a difficulty of 0.000244 (translated to pool difficulty, that would be 16), just like how people use kilodoge or millibitcoin.
What about a share? Pool operators may vary, but usually a share is defined as a valid hash at pool difficulty 16. Pools may set a pool difficulty that everyone mines at, automatically adjust pool difficulty for each individual miner depending on their hashrate (called vardiff), or allow users to set their own difficulty. They might even create different strata with different pool difficulty levels. A share at a higher pool difficulty is harder to find but worth more. Basically, if you're currently mining at pool difficulty 16 and switch to 32, you'll mine shares half as often but every share you mine is worth two shares. (Unfortunately, the definition of "share" appears to be overloaded - it can mean either each thing a miner submits to a pool or its equivalent for a pool difficulty of 16. It's like how a "standard drink" is 0.6 oz alcohol - if you had a 24 oz beer at 5% ABV, you could say you had a drink, but technically you had two drinks in terms of alcohol content.)
A round is the period of time since the last block was found by a pool to the next time a block is found by the pool. Round shares are shares (i.e. equivalent shares for difficulty 16) that have been found by pool miners. Estimated shares is an estimate of how many shares it will take for a pool to find a block. This number is the same for each pool regardless of hashrate, and only depends on the current difficulty. It is equal to d * 212. Why? Note that a share at pool difficulty 16 is 16 times as difficult as a share at pool difficulty 1, and pool difficulty 1 is 216 times easier than difficulty 1, so the overall effect is 216 / 16. (PPS only: The baseline PPS rate is the amount a miner is paid for each share at difficulty 1; pools PPS rate is the amount a miner is paid for each share at difficulty 16. Pools PPS rate is calculated by dividing the block reward by the estimated shares. So for Dogecoin currently, you divide 500,000 by 5,645,699 to get pools PPS rate 0.088563.)
The Bitcoin wiki has a page on difficulty, but it's somewhat technical and doesn't really talk about mining pools, so I created this post because I couldn't find anything better on Google and ended up using a bit of math and common sense to figure these things out. Though I do recommend reading it for the technically inclined.
For other things like Prop, PPLNS, PPS, etc. there are many existing well-written resources, so I'm saving my breath. This page lists pretty much every single pool structure you might encounter. PPLNS (basic guide, advanced) is probably the most common but also somewhat difficult to understand.
submitted by tony_1337 to dogecoin [link] [comments]

Question about mining..

Hey guys!
Recently, me and one of my friends got really excited about bitcoins. We have some money to spend on this, and we have chosen a device, called AntMiner S3 (around 159 dollars, with a 453 GH/s value. We calculated it on a site, and it showed, that the earning per month is around 40-45 dollars. My question is, are these values:
-Correct? -Do they mean solo or pool?
The site https://alloscomp.com/bitcoin/calculator
Thanks in advance!
submitted by Lub1k to Bitcoin [link] [comments]

HashFlare Bitcoin Calculator

https://hashflare.io/87253E49
Check out my HashFlare Microsoft Excel calculator to show how much Hashrate will mine Bitcoins each day. This is for the SHA-256 algorithm. HashFlare sells Hashrate for buyers to cloud mine Bitcoins. You give them USD or BTC and in return they sell you Hashrate, which in return produced Satoshis (lowest unit of a Bitcoin).
To use the Excel: bold cell font are user input or headers. There are 3 worksheets: HashFlare, Contract, and Bitcoins.
The HashFlare worksheet has 3 user inputs:
• First is Hash Power: input how much Hashrate to buy.
• Second is Current Balance: input how many BTC you may already have in your account.
• Third is Lowest Price BTC: the price per 10,000,000,000 Hashrate is $2.20.
a) The price varies in BTC due to the constant change in BTC/USD value. b) 10,000,000,000 Hashrate used to cost $1.50 but due to high demand the price went up and will continue so get in while prices are still low.
The Contract worksheet is informational only (no user input), what you buy is 1-year contract of Hashrate. When you consider the future of the Hashrate you bought this worksheet deducts 1-year old purchases because the contract expired scroll down to view the future. One year later, my formula automatically deducts year old purchased Hashrate.
The Bitcoins worksheet has 4 user inputs:
• First is Reward per Block: right now, when a minepool solves a block they are rewarded 12.5 Bitcoins.
a) There soon will be a halving and the reward will be 6.25.
• The second is Difficulty: as more miners mine the Blockchain the difficulty increases. a) This ensures a Billionaire will not invest a mammoth amount of money to mine a drastic number of Bitcoins and in turn becomes a Trillionaire and enslave the Earth.
• Third is BTC to USD: input an updated value to seek precision on how much 10,000,000,000 Hashrate cost or go on HashFlare website and find it for yourself.
a) The bold cell where it is one, decimal, and eight zeros is to know how various BTC amounts to USD.
Google everything you need to learn and know. To edit the Excel workbook, you must download the file first. The dates are always updated to today and it helps you to know what day how much BTC you will earn if you invest today and reup 100% of the daily payments. This does not consider external investments after the first investment. Take into consideration as time progress it is safe to assume the difficulty will increase. Therefore, this Excel is good to eye ball the work in the short run and gives a dream in the long run. Use my referral link so we both get a bonus!
12JTNXpLe3Lc6K6W5CL86zZyhY26uQyGhY Bitcoin Donation Address
https://1drv.ms/x/s!As44fpPGkuI4he9pXA0iNbq1-KXFRA
submitted by bitcoineconomics2018 to u/bitcoineconomics2018 [link] [comments]

Starting into bitcoin mining.

So I got alittle lucky last week, I had 30 remaining $ in my bitcoin wallet, I've had them for months. I found a bitcoin betting website, I deposited $10, Turned it into $300. Cashed out, I ordered 2 Antminer S3+'s with a 1000W HP server power supply kit with wiring/adapter for the miners. Electricity costs me .08$/kWh, $10 invested, How accurate are bitcoin miner calculators? Like coinwarz for example, you can insert difficulty, electricity costs, watts, and GH/s, Based off that calculator, I'm looking at $27 a month profit, Which is next to nothing. But it costs me $10 to start so who cares right? Does anyone have any tips for someone new to it (I've followed bitcoins and mining a bit but never done it) Also any pool advice for when I get my miners?
submitted by OneFastGSR to BitcoinMining [link] [comments]

HashFlare Bitcoin Calculator

HashFlare Bitcoin Calculator
https://hashflare.io/87253E49
Check out my HashFlare Microsoft Excel calculator to show how much Hashrate will mine Bitcoins each day. This is for the SHA-256 algorithm. HashFlare sells Hashrate for buyers to cloud mine Bitcoins. You give them USD or BTC and in return they sell you Hashrate, which in return produced Satoshis (lowest unit of a Bitcoin).
To use the Excel: bold cell font are user input or headers. There are 3 worksheets: HashFlare, Contract, and Bitcoins.
The HashFlare worksheet has 3 user inputs:
• First is Hash Power: input how much Hashrate to buy.
• Second is Current Balance: input how many BTC you may already have in your account.
• Third is Lowest Price BTC: the price per 10,000,000,000 Hashrate is $2.20.
a) The price varies in BTC due to the constant change in BTC/USD value. b) 10,000,000,000 Hashrate used to cost $1.50 but due to high demand the price went up and will continue so get in while prices are still low.
The Contract worksheet is informational only (no user input), what you buy is 1-year contract of Hashrate. When you consider the future of the Hashrate you bought this worksheet deducts 1-year old purchases because the contract expired scroll down to view the future. One year later, my formula automatically deducts year old purchased Hashrate.
The Bitcoins worksheet has 4 user inputs:
• First is Reward per Block: right now, when a minepool solves a block they are rewarded 12.5 Bitcoins.
a) There soon will be a halving and the reward will be 6.25.
• The second is Difficulty: as more miners mine the Blockchain the difficulty increases. a) This ensures a Billionaire will not invest a mammoth amount of money to mine a drastic number of Bitcoins and in turn becomes a Trillionaire and enslave the Earth.
• Third is BTC to USD: input an updated value to seek precision on how much 10,000,000,000 Hashrate cost or go on HashFlare website and find it for yourself.
a) The bold cell where it is one, decimal, and eight zeros is to know how various BTC amounts to USD.
Google everything you need to learn and know. To edit the Excel workbook, you must download the file first. The dates are always updated to today and it helps you to know what day how much BTC you will earn if you invest today and reup 100% of the daily payments. This does not consider external investments after the first investment. Take into consideration as time progress it is safe to assume the difficulty will increase. Therefore, this Excel is good to eye ball the work in the short run and gives a dream in the long run. Use my referral link so we both get a bonus!
12JTNXpLe3Lc6K6W5CL86zZyhY26uQyGhY Bitcoin Donation Address
https://1drv.ms/x/s!As44fpPGkuI4he9pXA0iNbq1-KXFRA
submitted by bitcoineconomics2018 to u/bitcoineconomics2018 [link] [comments]

Best Bitcoin Mining Site 2020  Without Investment ... Bitcoin mining pool - BTC.com tutorial New Free Mining Bitcoin Bonus Power 800 Gh/s Review Mining Minershash EMCD Bitcoin & Litecoin Mining Pool Review HOW TO: MINING BITCOINS SO FAST & EASY - 100 GH/s FOR FREE + PAYMENTS PROOF !

F2Pool is a geographically distributed mining pool, helping miners all over the globe secure Bitcoin and 40+ Proof–of–Work networks since 2013. Cryptocurrency Mining Profitability Calculator. SHA-256. GH/s. Watts $/kWh Scrypt. KH/s. Watts $/kWh The following list of cryptocurrencies are being compared to Bitcoin mining to determine if a cryptocurrency is more profitable to mine than mining Bitcoin. a pool's efficiency, and pool fees. Best computing power (hashing power) in the form of Cloud Mining for the purpose of Bitcoin, Ethereum, Monero, Dash, Zcash, Litecoin and other (altcoins) cryptocurrency creation and transaction confirmation. Coins Server Pool Hash Total Hash Algorithm 24-hour income GUIDE Blocks Reward calculator; ETH: eth.w.aapool.org:6608: 79.09 MH: 87.88 TH: Ethash: 0.2873607699096 ETH/GH To increase the chances of solving a Bitcoin block, you can join a pool of other miners all working together to solve a block. Once a block is solved the Bitcoin mining reward is split between the pool participants. And in turn the Bitcoin mining pool charges a small fee, typically 1% to 4%. Here is a list of popular Bitcoin mining pools

[index] [27629] [19467] [10546] [4767] [29362] [13158] [3453] [24652] [19352] [10165]

Best Bitcoin Mining Site 2020 Without Investment ...

Free Legit Bitcoin Mining Site 2020 800 GH/S signup bonus No investment Technical Aashish website link here:- https://minershash.com/account/reg?ref=aas... EMCD is a profit switching sha-256 and scrypt mining pool, basically, the pool will mine whatever coin is most profitable with your mining rigs, and pay you out once per day with your earnings. BTC.com is a popular block explorer bitcoin mining pool. This tutorial will demonstrate how to mine bitcoin on btc.com mining pool. #bitcoin #miningpool #cryptomining #mining #BTC. How to generate free Bitcoin 1. Enter your personal Bitcoin Wallet Address – make sure to enter a valid wallet address. It is recommended to generate a new Bitcoin Wallet Address everytime you ... SITUS BARU FREE MINING BITCOIN SPEED WUSSS..! 2750 gh/s FREE BITCOIN UANG GRATIS BURUAN Link di bawah; https://bit.ly/2AzwBJv Yang perlu dan ada yg belum paham silahkan di komen akan di ...

Flag Counter