FPGA (Field-Programmable Gate Array) vs ASIC Crypto Mining

Mining for Profitability - Horizen (formerly ZenCash) Thanks Early GPU Miners

Mining for Profitability - Horizen (formerly ZenCash) Thanks Early GPU Miners
Thank you for inviting Horizen to the GPU mining AMA!
ZEN had a great run of GPU mining that lasted well over a year, and brought lots of value to the early Zclassic miners. It is mined using Equihash protocol, and there have been ASIC miners available for the algorithm since about June of 2018. GPU mining is not really profitable for Horizen at this point in time.
We’ve got a lot of miners in the Horizen community, and many GPU miners also buy ASIC miners. Happy to talk about algorithm changes, security, and any other aspect of mining in the questions below. There are also links to the Horizen website, blog post, etc. below.
So, if I’m not here to ask you to mine, hold, and love ZEN, what can I offer? Notes on some of the lessons I’ve learned about maximizing mining profitability. An update on Horizen - there is life after moving on from GPU mining. As well as answering your questions during the next 7 days.

Mining for Profitability - Horizen (formerly ZenCash) Thanks Early GPU Miners

Author: Rolf Versluis - co-founder of Horizen

In GPU mining, just like in many of the activities involved with Bitcoin and cryptocurrencies, there is both a cycle and a progression. The Bitcoin price cycle is fairly steady, and by creating a personal handbook of actions to take during the cycle, GPU miners can maximize their profitability.
Maximizing profitability isn't the only aspect of GPU mining that is important, of course, but it is helpful to be able to invest in new hardware, and be able to have enough time to spend on building and maintaining the GPU miners. If it was a constant process that also involved losing money, then it wouldn't be as much fun.

Technology Progression

For a given mining algorithm, there is definitely a technology progression. We can look back on the technology that was used to mine Bitcoin and see how it first started off as Central Processing Unit (CPU) mining, then it moved to Graphical Processing Unit (GPU) mining, then Field Programmable Gate Array (FPGA), and then Application Specific Integrated Circuit (ASIC).
Throughout this evolution we have witnessed a variety of unsavory business practices that unfortunately still happen on occasion, like ASIC Miner manufacturers taking pre-orders 6 months in advance, GPU manufacturers creating commercial cards for large farms that are difficult for retail customers to secure and ASIC Miner manufacturers mining on gear for months before making it available for sale.
When a new crypto-currency is created, in many cases a new mining algorithm is created also. This is important, because if an existing algorithm was used, the coin would be open to a 51% attack from day one, and may not even be able to build a valid blockchain.
Because there's such a focus on profitable software, developers for GPU mining applications are usually able to write a mining application fairly rapidly, then iterate it to the limit of current GPU technology. If it looks like a promising new cryptocurrency, FPGA stream developers and ASIC Hardware Developers start working on their designs at the same time.
The people who create the hashing algorithms run by the miners are usually not very familiar with the design capabilities of Hardware manufacturers. Building application-specific semiconductors is an industry that's almost 60 years old now, and FPGA’s have been around for almost 35 years. This is an industry that has very experienced engineers using advanced design and modeling tools.
Promising cryptocurrencies are usually ones that are deploying new technology, or going after a big market, and who have at least a team of talented software developers. In the best case, the project has a full-stack business team involving development, project management, systems administration, marketing, sales, and leadership. This is the type of project that attracts early investment from the market, which will drive the price of the coin up significantly in the first year.
For any cryptocurrency that's a worthwhile investment of time, money, and electricity for the hashing, there will be a ASIC miners developed for it. Instead of fighting this technology progression, GPU miners may be better off recognizing it as inevitable, and taking advantage of the cryptocurrency cycle to maximize GPU mining profitability instead.

Cryptocurrency Price Cycle

For quality crypto projects, in addition to the one-way technology progression of CPU -> GPU -> FPGA -> ASIC, there is an upward price progression. More importantly, there is a cryptocurrency price cycle that oscillates around an overall upgrade price progression. Plotted against time, a cycle with an upward progressions looks like a sine wave with an ever increasing average value, which is what we see so far with the Bitcoin price.

Cryptocurrency price cycle and progression for miners
This means mining promising new cryptocurrencies with GPU miners, holding them as the price rises, and being ready to sell a significant portion in the first year. Just about every cryptocurrency is going to have a sharp price rise at some point, whether through institutional investor interest or by being the target of a pump-and-dump operation. It’s especially likely in the first year, while the supply is low and there is not much trading volume or liquidity on exchanges.
Miners need to operate in the world of government money, as well as cryptocurrency. The people who run mining businesses at some point have to start selling their mining proceeds to pay the bills, and to buy new equipment as the existing equipment becomes obsolete. Working to maximize profitability means more than just mining new cryptocurrencies, it also means learning when to sell and how to manage money.

Managing Cash for Miners

The worst thing that can happen to a business is to run out of cash. When that happens, the business usually shuts down and goes into bankruptcy. Sometimes an investor comes in and picks up the pieces, but at the point the former owners become employees.
There are two sides to managing cash - one is earning it, the other is spending it, and the cryptocurrency price cycle can tell the GPU miner when it is the best time to do certain things. A market top and bottom is easy to recognize in hindsight, and harder to see when in the middle of it. Even if a miner is able to recognize the tops and bottoms, it is difficult to act when there is so much hype and positivity at the top of the cycle, and so much gloom and doom at the bottom.
A decent rule of thumb for the last few cycles appears to be that at the top and bottom of the cycle BTC is 10x as expensive compared to USD as the last cycle. Newer crypto projects tend to have bigger price swings than Bitcoin, and during the rising of the pricing cycle there is the possibility that an altcoin will have a rise to 100x its starting price.
Taking profits from selling altcoins during the rise is important, but so is maintaining a reserve. In order to catch a 100x move, it may be worth the risk to put some of the altcoin on an exchange and set a very high limit order. For the larger cryptocurrencies like Bitcoin it is important to set trailing sell stops on the way up, and to not buy back in for at least a month if a sell stop gets triggered. Being able to read price charts, see support and resistance areas for price, and knowing how to set sell orders are an important part of mining profitability.

Actions to Take During the Cycle

As the cycle starts to rise from the bottom, this is a good time to buy mining hardware - it will be inexpensive. Also to mine and buy altcoins, which are usually the first to see a price rise, and will have larger price increases than Bitcoin.
On the rise of the cycle, this is a good time to see which altcoins are doing well from a project fundamentals standpoint, and which ones look like they are undergoing accumulation from investors.
Halfway through the rise of the cycle is the time to start selling altcoins for the larger project cryptos like Bitcoin. Miners will miss some of the profit at the top of the cycle, but will not run out of cash by doing this. This is also the time to stop buying mining hardware. Don’t worry, you’ll be able to pick up that same hardware used for a fraction of the price at the next bottom.
As the price nears the top of the cycle, sell enough Bitcoin and other cryptocurrencies to meet the following projected costs:
  • Mining electricity costs for the next 12 months
  • Planned investment into new miners for the next cycle
  • Additional funds needed for things like supporting a family or buying a Lambo
  • Taxes on all the capital gains from the sale of cryptocurrencies
It may be worth selling 70-90% of crypto holdings, maintaining a reserve in case there is second upward move caused by government bankruptcies. But selling a large part of the crypto is helpful to maintaining profitability and having enough cash reserves to make it through the bottom part of the next cycle.
As the cycle has peaked and starts to decline, this is a good time to start investing in mining facilities and other infrastructure, brush up on trading skills, count your winnings, and take some vacation.
At the bottom of the cycle, it is time to start buying both used and new mining equipment. The bottom can be hard to recognize.
If you can continue to mine all the way through bottom part of the cryptocurrency pricing cycle, paying with the funds sold near the top, you will have a profitable and enjoyable cryptocurrency mining business. Any cryptocurrency you are able to hold onto will benefit from the price progression in the next higher cycle phase.

An Update on Horizen - formerly ZenCash

The team at Horizen recognizes the important part that GPU miners played in the early success of Zclassic and ZenCash, and there is always a welcoming attitude to any of ZEN miners, past and present. About 1 year after ZenCash launched, ASIC miners became available for the Equihash algorithm. Looking at a chart of mining difficulty over time shows when it was time for GPU miners to move to mining other cryptocurrencies.

Horizen Historical Block Difficulty Graph
Looking at the hashrate chart, it is straightforward to see that ASIC miners were deployed starting June 2018. It appears that there was a jump in mining hashrate in October of 2017. This may have been larger GPU farms switching over to mine Horizen, FPGA’s on the network, or early version of Equihash ASIC miners that were kept private.
The team understands the importance of the cryptocurrency price cycle as it affects the funds from the Horizen treasury and the investments that can be made. 20% of each block mined is sent to the Horizen non-profit foundation for use to improve the project. Just like miners have to manage money, the team has to decide whether to spend funds when the price is high or convert it to another form in preparation for the bottom part of the cycle.
During the rise and upper part of the last price cycle Horizen was working hard to maximize the value of the project through many different ways, including spending on research and development, project management, marketing, business development with exchanges and merchants, and working to create adoption in all the countries of the world.
During the lower half of the cycle Horizen has reduced the team to the essentials, and worked to build a base of users, relationships with investors, exchanges, and merchants, and continue to develop the higher priority software projects. Lower priority software development, going to trade shows, and paying for business partnerships like exchanges and applications have all been completely stopped.
Miners are still a very important part of the Horizen ecosystem, earning 60% of the block reward. 20% goes to node operators, with 20% to the foundation. In the summer of 2018 the consensus algorithm was modified slightly to make it much more difficult for any group of miners to perform a 51% attack on Horizen. This has so far proven effective.
The team is strong, we provide monthly updates on a YouTube live stream on the first Wednesday of each month where all questions asked during the stream are addressed, and our marketing team works to develop awareness of Horizen worldwide. New wallet software was released recently, and it is the foundation application for people to use and manage their ZEN going forward.
Horizen is a Proof of Work cryptocurrency, and there is no plan to change that by the current development team. If there is a security or centralization concern, there may be change to the algorithm, but that appears unlikely at this time, as the hidden chain mining penalty looks like it is effective in stopping 51% attacks.
During 2019 and 2020 the Horizen team plans to release many new software updates:
  • Sidechains modification to main software
  • Sidechain Software Development Kit
  • Governance and Treasury application running on a sidechain
  • Node tracking and payments running on a sidechain
  • Conversion from blockchain to a Proof of Work BlockDAG using Equihash mining algorithm
After these updates are working well, the team will work to transition Horizen over to a governance model where major decisions and the allocation of treasury funds are done through a form of democratic voting. At this point all the software developed by Horizen is expected to be open source.
When the governance is transitioned, the project should be as decentralized as possible. The goal of decentralization is to enable resilience and preventing the capture of the project by regulators, government, criminal organizations, large corporations, or a small group of individuals.
Everyone involved with Horizen can be proud of what we have accomplished together so far. Miners who were there for the early mining and growth of the project played a large part in securing the network, evangelizing to new community members, and helping to create liquidity on new exchanges. Miners are still a very important part of the project and community. Together we can look forward to achieving many new goals in the future.

Here are some links to find out more about Horizen.
Horizen Website – https://horizen.global
Horizen Blog – https://blog.horizen.global
Horizen Reddit - https://www.reddit.com/Horizen/
Horizen Discord – https://discord.gg/SuaMBTb
Horizen Github – https://github.com/ZencashOfficial
Horizen Forum – https://forum.horizen.global/
Horizen Twitter – https://twitter.com/horizenglobal
Horizen Telegram – https://t.me/horizencommunity
Horizen on Bitcointalk – https://bitcointalk.org/index.php?topic=2047435.0
Horizen YouTube Channel – https://www.youtube.com/c/Horizen/
Buy or Sell Horizen
Horizen on CoinMarketCap – https://coinmarketcap.com/currencies/zencash/

About the Author:

Rolf Versluis is Co-Founder and Executive Advisor of the privacy oriented cryptocurrency Horizen. He also operates multiple private cryptocurrency mining facilities with hundreds of operational systems, and has a blog and YouTube channel on crypto mining called Block Operations.
Rolf applies his engineering background as well as management and leadership experience from running a 60 person IT company in Atlanta and as a US Navy nuclear submarine officer operating out of Hawaii to help grow and improve the businesses in which he is involved.
Thank you again for the Ask Me Anything - please do. I'll be checking the post and answering questions actively from 28 Feb to 6 Mar 2019 - Rolf
submitted by Blockops to gpumining [link] [comments]

A cryptocurrency (or crypto currency) is a digital asset


Main article: Blockchain
The validity of each cryptocurrency's coins is provided by a blockchain. A blockchain is a continuously growing list of records), called blocks, which are linked and secured using cryptography.[23][26] Each block typically contains a hash pointer as a link to a previous block,[26] a timestamp and transaction data.[27] By design, blockchains are inherently resistant to modification of the data. It is "an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable and permanent way".[28] For use as a distributed ledger, a blockchain is typically managed by a peer-to-peer network collectively adhering to a protocol for validating new blocks. Once recorded, the data in any given block cannot be altered retroactively without the alteration of all subsequent blocks, which requires collusion of the network majority.
Blockchains are secure by design and are an example of a distributed computing system with high Byzantine fault tolerance. Decentralized consensus has therefore been achieved with a blockchain.[29] Blockchains solve the double-spendingproblem without the need of a trusted authority or central server), assuming no 51% attack (that has worked against several cryptocurrencies).


Cryptocurrencies use various timestamping schemes to "prove" the validity of transactions added to the blockchain ledger without the need for a trusted third party.
The first timestamping scheme invented was the proof-of-work scheme. The most widely used proof-of-work schemes are based on SHA-256 and scrypt.[16]
Some other hashing algorithms that are used for proof-of-work include CryptoNight, Blake), SHA-3, and X11#X11).
The proof-of-stake is a method of securing a cryptocurrency network and achieving distributed consensus through requesting users to show ownership of a certain amount of currency. It is different from proof-of-work systems that run difficult hashing algorithms to validate electronic transactions. The scheme is largely dependent on the coin, and there's currently no standard form of it. Some cryptocurrencies use a combined proof-of-work/proof-of-stake scheme.[16]


📷Hashcoin mine
In cryptocurrency networks, mining is a validation of transactions. For this effort, successful miners obtain new cryptocurrency as a reward. The reward decreases transaction fees by creating a complementary incentive to contribute to the processing power of the network. The rate of generating hashes, which validate any transaction, has been increased by the use of specialized machines such as FPGAs and ASICs running complex hashing algorithms like SHA-256 and Scrypt.[30] This arms race for cheaper-yet-efficient machines has been on since the day the first cryptocurrency, bitcoin, was introduced in 2009.[30] With more people venturing into the world of virtual currency, generating hashes for this validation has become far more complex over the years, with miners having to invest large sums of money on employing multiple high performance ASICs. Thus the value of the currency obtained for finding a hash often does not justify the amount of money spent on setting up the machines, the cooling facilities to overcome the enormous amount of heat they produce, and the electricity required to run them.[30][31]
Some miners pool resources, sharing their processing power over a network to split the reward equally, according to the amount of work they contributed to the probability of finding a block). A "share" is awarded to members of the mining pool who present a valid partial proof-of-work.
As of February 2018, the Chinese Government halted trading of virtual currency, banned initial coin offerings and shut down mining. Some Chinese miners have since relocated to Canada.[32] One company is operating data centers for mining operations at Canadian oil and gas field sites, due to low gas prices.[33] In June 2018, Hydro Quebec proposed to the provincial government to allocate 500 MW to crypto companies for mining.[34] According to a February 2018 report from Fortune,[35] Iceland has become a haven for cryptocurrency miners in part because of its cheap electricity. Prices are contained because nearly all of the country's energy comes from renewable sources, prompting more mining companies to consider opening operations in Iceland.[citation needed]
In March 2018, a town in Upstate New York put an 18-month moratorium on all cryptocurrency mining in an effort to preserve natural resources and the "character and direction" of the city.[36]

GPU price rise

An increase in cryptocurrency mining increased the demand of graphics cards (GPU) in 2017.[37] Popular favorites of cryptocurrency miners such as Nvidia's GTX 1060 and GTX 1070 graphics cards, as well as AMD's RX 570 and RX 580 GPUs, doubled or tripled in price – or were out of stock.[38] A GTX 1070 Ti which was released at a price of $450 sold for as much as $1100. Another popular card GTX 1060's 6 GB model was released at an MSRP of $250, sold for almost $500. RX 570 and RX 580 cards from AMD were out of stock for almost a year. Miners regularly buy up the entire stock of new GPU's as soon as they are available.[39]
Nvidia has asked retailers to do what they can when it comes to selling GPUs to gamers instead of miners. "Gamers come first for Nvidia," said Boris Böhles, PR manager for Nvidia in the German region.[40]


📷An example paper printable bitcoin wallet consisting of one bitcoin address for receiving and the corresponding private key for spendingMain article: Cryptocurrency wallet
A cryptocurrency wallet stores the public and private "keys" or "addresses" which can be used to receive or spend the cryptocurrency. With the private key, it is possible to write in the public ledger, effectively spending the associated cryptocurrency. With the public key, it is possible for others to send currency to the wallet.


Bitcoin is pseudonymous rather than anonymous in that the cryptocurrency within a wallet is not tied to people, but rather to one or more specific keys (or "addresses").[41] Thereby, bitcoin owners are not identifiable, but all transactions are publicly available in the blockchain. Still, cryptocurrency exchanges are often required by law to collect the personal information of their users.
Additions such as Zerocoin, Zerocash and CryptoNote have been suggested, which would allow for additional anonymity and fungibility.[42][43]
submitted by TheResearcher012 to GreatLifePostsGoTeam [link] [comments]

QuarkChain Testnet 2.0 Mining.

QuarkChain Testnet 1.0 was built based on standardized blockchain system requirements, which included network, wallet, browser, and virtual machine functionalities. Other than the fact that the token was a test currency, the environment was completely compatible with the main network. By enhancing the communication efficiency and security of the network, Testnet 2.0 further improves the openness of the network. In addition, Testnet 2.0 will allow community members (other than citizens or residents of the United States) to contribute directly to the network, i.e. running a full node and mining, and receive testnet tokens as rewards.
QuarkChain Testnet 2.0 will support multiple mining algorithms, including two typical algorithms: Ethash and Double SHA256, as well as QuarkChain’s unique algorithm called Qkchash – a customized ASIC-resistant, CPU mining algorithm, exclusively developed by QuarkChain. Mining is available both on the root chain and on shards due to QuarkChain’s two-layered blockchain structure. Miners can flexibly choose to mine on the root chain with higher computing power requirements or on shards based on their own computing power levels. Our Goal By allowing community members to participate in mining on Testnet 2.0, our goal is to enhance QuarkChain’s community consensus, encourage community members to participate in testing and building the QuarkChain network, and gain first-hand experience of QuarkChain’s high flexibility and usability. During this time, we hope that the community can develop a better understanding about our mining algorithms, sharding technologies, and governance structures, etc. Furthermore, this will be a more thorough challenge to QuarkChain’s design before the launch of mainnet! Thus, we sincerely invite you to join the Testnet 2.0 mining event and build QuarkChain’s infrastructure together!
Today, we’re pleased to announce that we are officially providing the CPU mining demo to the public (other than citizens and residents of the United States)! Everyone can participate in our mining event, and earn tQKC, which can be exchanged to real rewards by non-U.S. persons after the launch of our mainnet. Also, we expect to upgrade our testnet over time, and expect to allow GPU mining for Ethash, and ASIC mining for Double SHA256 in the future. In addition, in the near future, a mining pool that is compatible with all mining algorithms of QuarkChain is also expected to be supported.
We hope all the community members can join in with us, and work together to complete this milestone! 2 Introduction to Mining Algorithms 2.1 What is mining? Mining is the process of generating the new blocks, in which the records of current transactions are added to the record of past transactions. Miners use software that contribute their mining power to participate in the maintenance of a blockchain. In return, they obtain a certain amount of QKC per block, which is called coinbase reward. Like many other blockchain technologies, QuarkChain adopts the most widely used Proof of Work (PoW) consensus algorithm to secure the network.
A cryptographically-secure PoW is a costly and time-consuming process which is difficult to solve due to computation-intensity or memory intensity but easy for others to verify. For a block to be valid it must satisfy certain requirements and hash to a value less than the current target threshold. Reverting a block requires recreating all successor blocks and redoing the work they contain, which is costly.
By running a cluster, everyone can become a miner and participate in the mining process. The mining rewards are proportional to the number of blocks mined by each individual.
2.2 Introduction to QuarkChain Algorithms and Mining setup According to QuarkChain’s two-layered blockchain structure and Boson consensus, different shards can apply different consensus and mining algorithms. As part of the Boson consensus, each shard can adjust the difficulty dynamically to increase or decrease the hash power of each shard chain.
In order to fully test QuarkChain testnet 2.0, we adopt three different types of mining algorithms” Ethash, Double SHA256, and Qkchash, which is ASIC resistant and exclusively developed by QuarkChain founder Qi Zhou. These first two hash algorithms correspond to the mining algorithms dominantly conducted on the graphics processing unit (GPU) and application-specific integrated circuits (ASIC), respectively.
I. Ethash Ethash is the PoW mining algorithm for Ethereum. It is the latest version of earlier Dagger-Hashimoto. Ethash is memory intensive, which makes it require large amounts of memory space in the process of mining. The efficiency of mining is basically independent of the CPU, but directly related to memory size and bandwidth. Therefore, by design, building Ethash ASIC is relatively difficult. Currently, the Ethash mining is dominantly conducted on the GPU machines. Read more about Ethash: https://github.com/ethereum/wiki/wiki/Ethash
II. Double SHA256 Double SHA256 is the PoW mining algorithms for Bitcoin. It is computational intensive hash algorithm, which uses two SHA256 iterations for the block header. If the hash result is less than the specific target, the mining is successful. ASIC machine has been developed by Bitmain to find more hashes with less electrical power usage. Read more about Double SHA256: https://en.bitcoin.it/wiki/Block_hashing_algorithm
III. Qkchash Originally, Bitcoin mining was conducted on the CPU of individual computers, with more cores and greater speed resulting in more profitability. After that, the mining process became dominated by GPU machines, then field-programmable gate arrays (FPGA) and finally ASIC, in a race to achieve more hash rates with less electrical power usage. Due to this arms race, it has become increasingly harder for prospective new miners to join. This raises centralization concerns because the manufacturers of the high-performance ASIC are concentrated in a small few.
To solve this, after extensive research and development, QuarkChain founder Dr. Qi Zhou has developed mining algorithm — Qkchash, that is expected to be ASIC-resistant. The idea is motivated by the famous date structure orders-statistic tree. Based on this data structure, Qkchash requires to perform multiple search, insert, and delete operations in the tree, which tries to break the ASIC pipeline and makes the code execution path to be data-dependent and unpredictable besides random memory-access patterns. Thus, the mining efficiency is closely related to the CPU, which ensures the security of Boston consensus and encourges the mining decentralization.
Please refer to Dr. Qi’s paper for more details: https://medium.com/quarkchain-official/order-statistics-based-hash-algorithm-e40f108563c4
2.3 Testnet 2.0 mining configuration Numbers of Shards: 8 Cluster: According to the real-time online mining node The corresponding mining algorithm is Read more about Ethash with Guardian: https://github.com/QuarkChain/pyquarkchain/wiki/Ethash-with-Guardian)
We will provide cluster software and the demo implementation of CPU mining to the public. Miners are able to arbitrarily select one shard or multiple shards to mine according to the mining difficulty and rewards of different shards. GPU / ASIC mining is allowed if the public manages to get it working with the current testnet. With the upgrade of our testnet, we will further provide the corresponding GPU / ASIC software.
QuarkChain’s two-layered blockchain structure, new P2P mode, and Boson consensus algorithm are expected tobe fully tested and verified in the QuarkChain testnet 2.0. 3 Mining Guidance In order to encourage all community members to participate in QuarkChain Testnet 2.0 mining event, we have prepared three mining guidances for community members of different backgrounds.
Today we are releasing the Docker Mining Tutorial first. This tutorial provides a command line configuration guide for developers and a docker image for multiple platforms, including a concise introduction of nodes and mining settings. Follow the instructions here: Quick Start with QuarkChain Mining.
Next we will continue to release: A tutorial for community members who don’t have programming background. In this tutorial, we will teach how to create private QuarkChain nodes using AWS, and how to mine QKC step by step. This tutorial is expected to be released in the next few days. Programs and APIs integrated with GPU / ASIC mining. This is expected to allow existing miners to switch to QKC mining more seamlessly. Frequently Asked Questions: 1. Can I use my laptop or personal computer to mine? Yes, we will provide cluster software and the demo implementation of CPU mining to the public. Miners will be able to arbitrarily select one shard or multiple shards to mine according to the work difficulty and rewards of different shards. 2. What is the minimum requirements for my laptop or personal computer to mine? Please prepare a Linux or MacOs machine with public IP address or port forwarding set up. 3. Can I mine with my GPU or an ASIC machine? For now, we will only be providing the demo implementation of CPU mining as our first step. Interested miners/developers can rewrite the corresponding GPU / ASIC mining program, according to the JSON RPC API we provided. With the upgrade of our testnet, we expect to provide the corresponding GPU / ASIC interface at a later date. 4. What is the difference among the different mining algorithms? Which one should I choose? Double SHA256 is a computational intensive algorithm, but Ethash and Qkchash are memory intensive algorithms, which have certain requirements on the computer’s memory. Since currently we only support CPU mining, the mining efficiency entirely depends on the cores and speed of CPU. 5. For testnet mining, what else should I know? First, the mining process will occupy a computer’s memory. Thus, it is recommended to use an idle computer for mining. In Testnet 2.0 settings, the target block time of root chain is 60 seconds, and the target block time of shard chain is 10 seconds. The mining is a completely random process, which will take some time and consume a certain amount of electricity. 6. What are the risks of testnet mining? Currently our testnet is still under the development stage and may not be 100% stable. Thus, there would be some risks for QuarkChain main chain forks in testnet, software upgrades and system reboots. These may cause your tQKC or block record to be lost despite our best efforts to ensure the stability and security of the testnet.
For more technical questions, welcome to join our developer community on Discard: https://discord.me/quarkchain. 4 Reward Mechanism Testnet 2.0 and all rewards described herein, including mining, are not being offered and will not be available to any citizens or residents of the United States and certain other jurisdictions. All rewards will only be payable following the mainnet launch of QuarkChain. In order to claim or receive any of the following rewards after mainnet launch, you will be required to provide certain identifying documentation and information about yourself. Failure to provide such information or demonstrate compliance with the restrictions herein may result in forfeiture of all rewards, prohibition from participating in future QuarkChain programs, and other sanctions.
4.1 Mining Rewards
  1. Prize Pool A total of 5 million QKC prize pool have been reserved to motivate all miners to participate in the testnet 2.0 mining event. According to the different mining algorithms, the prize pool is allocated as follows:
Total Prize Pool: 5,000,000 QKC Prize Pool for Ethash Algorithm: 2,000,000 QKC Prize Pool for Double SHA256 Algorithm: 1,000,000 QKC Prize Pool for Qkchash Algorithm: 2,000,000 QKC
The number of QKC each miner is eligible to receive upon mainnet launch will be calculated on a pro rata basis for each mining algorithm set forth above, based on the ratio of sharded block mined by each miner to the total number of sharded block mined by all miners employing such mining algorithm in Testnet 2.0.
  1. Early-bird Rewards To encourage more people to participate early, we will provide early bird rewards. Miners who participate in the first month (December 2018, PST) will enjoy double points. This additional point reward will be ended on December 31, 2018, 11:59pm (PST).
4.2 Bonus for Bug Submission: If you find any bugs for QuarkChain testnet, please feel free to create an issue on our Github page: https://github.com/QuarkChain/pyquarkchain/issues, or send us an email to [email protected]. We may provide related rewards based on the importance and difficulty of the bugs.
4.3 Reward Rules: QuarkChain reserves the right to review the qualifications of the participants in this event. If any cheating behaviors were to be found, the participant will be immediately disqualified from any rewards. QuarkChain further reserves the right to update the rules of the event, to stop the event/network, or to restart the event/network in its sole discretion, including the right to interpret any rules, terms or conditions. For the latest information, please visit our official website or follow us on Telegram/Twitter. About QuarkChain QuarkChain is a flexible, scalable, and user-oriented blockchain infrastructure by applying blockchain sharding technology. It is one of the first public chains that successfully implemented state sharding technology for blockchain in the world. QuarkChain aims to deliver 100,000+ on-chain TPS. Currently, 14,000+ peak TPS has already been achieved by an early stage testnet. QuarkChain already has over 50 partners in its ecosystem. With flexibility, scalability, and usability, QuarkChain is enabling EVERYONE to enjoy blockchain technology at ANYTIME and ANYWHERE.
Testnet 2.0 and all rewards described herein are not being and will not be offered in the United States or to any U.S. persons (as defined in Regulation S promulgated under the U.S. Securities Act of 1933, as amended) or any citizens or residents of countries subject to sanctions including the Balkans, Belarus, Burma, Cote D’Ivoire, Cuba, Democratic Republic of Congo, Iran, Iraq, Liberia, North Korea, Sudan, Syria, Zimbabwe, Central African Republic, Crimea, Lebanon, Libya, Somalia, South Suda, Venezuela and Yemen. QuarkChain reserves the right to terminate, suspend or prohibit participation of any user in Testnet 2.0 at any time.
In order to claim or receive any rewards, including mining rewards, you will be required to provide certain identifying documentation and information. Failure to provide such information or demonstrate compliance with the restrictions herein may result in termination of your participation, forfeiture of all rewards, prohibition from participating in future QuarkChain programs, and other actions.
This announcement is provided for informational purposes only and does not guarantee anyone a right to participate in or receive any rewards in connection with Testnet 2.0.
Note: The use of Testnet 2.0 is subject to our terms and conditions available at: https://quarkchain.io/testnet-2-0-terms-and-conditions/
more about qurakchain: Website: https://quarkchain.io/cn/ Facebook: https://www.facebook.com/quarkchainofficial/ Twitter: https://twitter.com/Quark_Chain Telegram: https://t.me/quarkchainio
submitted by Rahadsr to u/Rahadsr [link] [comments]

The Concept of Bitcoin

The Concept of Bitcoin
What is Bitcoin?
Bitcoin is an experimental system of transfer and verification of property based on a network of peer to peer without any central authority.
The initial application and the main innovation of the Bitcoin network is a system of digital currency decentralized unit of account is bitcoin.
Bitcoin works with software and a protocol that allows participants to issue bitcoins and manage transactions in a collective and automatic way. As a free Protocol (open source), it also allows interoperability of software and services that use it. As a currency bitcoin is both a medium of payment and a store of value.
Bitcoin is designed to self-regulate. The limited inflation of the Bitcoin system is distributed homogeneously by computing the network power, and will be limited to 21 million divisible units up to the eighth decimal place. The functioning of the Exchange is secured by a general organization that everyone can examine, because everything is public: the basic protocols, cryptographic algorithms, programs making them operational, the data of accounts and discussions of the developers.
The possession of bitcoins is materialized by a sequence of numbers and letters that make up a virtual key allowing the expenditure of bitcoins associated with him on the registry. A person may hold several key compiled in a 'Bitcoin Wallet ', 'Keychain' web, software or hardware which allows access to the network in order to make transactions. Key to check the balance in bitcoins and public keys to receive payments. It contains also (often encrypted way) the private key associated with the public key. These private keys must remain secret, because their owner can spend bitcoins associated with them on the register. All support (keyrings) agrees to maintain the sequence of symbols constituting your keychain: paper, USB, memory stick, etc. With appropriate software, you can manage your assets on your computer or your phone.
Bitcoin on an account, to either a holder of bitcoins in has given you, for example in Exchange for property, either go through an Exchange platform that converts conventional currencies in bitcoins, is earned by participating in the operations of collective control of the currency.
The sources of Bitcoin codes have been released under an open source license MIT which allows to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the software, subject to insert a copyright notice into all copies.
Bitcoin creator, Satoshi Nakamoto
What is the Mining of bitcoin?
Technical details :
During mining, your computer performs cryptographic hashes (two successive SHA256) on what is called a header block. For each new hash, mining software uses a different random number that called Nuncio. According to the content of the block and the nonce value typically used to express the current target. This number is called the difficulty of mining. The difficulty of mining is calculated by comparing how much it is difficult to generate a block compared to the first created block. This means that a difficulty of 70000 is 70000 times more effort that it took to Satoshi Nakamoto to generate the first block. Where mining was much slower and poorly optimized.
The difficulty changes each 2016 blocks. The network tries to assign the difficulty in such a way that global computing power takes exactly 14 days to generate 2016 blocks. That's why the difficulty increases along with the power of the network.
Material :
In the beginning, mining with a processor (CPU) was the only way to undermine bitcoins. (GPU) graphics cards have possibly replaced the CPU due to their nature, which allowed an increase between 50 x to 100 x in computing power by using less electricity by megahash compared to a CPU.
Although any modern GPU can be used to make the mining, the brand AMD GPU architecture has proved to be far superior to nVidia to undermine bitcoins and the ATI Radeon HD 5870 card was the most economical for a time.
For a more complete list of graphics cards and their performance, see Wiki Bitcoin: comparison of mining equipment
In the same way that transition CPU to GPU, the world of mining has evolved into the use of the Field Programmable Gate Arrays (FPGA) as a mining platform. Although FPGAs did not offer an increase of 50 x to 100 x speed of calculation as the transition from CPU to GPU, they offered a better energy efficiency.
A typical HD/s 600 graphics card consumes about 400w of power, while a typical FPGA device can offer a rate of hash of 826 MH/s to 80w of power consumption, a gain of 5 x more calculations for the same energy power. Since energy efficiency is a key factor in the profitability of mining, it was an important step for the GPU to FPGA migration for many people.
The world of the mining of bitcoin is now migrating to the Application Specific Integrated Circuit (ASIC). An ASIC is a chip designed specifically to accomplish a single task. Unlike FPGAs, an ASIC is unable to be reprogrammed for other tasks. An ASIC designed to undermine bitcoins cannot and will not do anything else than to undermine bitcoins.
The stiffness of an ASIC allows us to offer an increase of 100 x computing power while reducing power consumption compared to all other technologies. For example, a classic device to offer 60 GH/s (1 hashes equals 1000 Megahash. 1GH/s = 1000 Mh/s) while consuming 60w of electricity. Compared to the GPU, it is an increase in computing power of 100 x and a reduction of power consumption by a factor of 7.
Unlike the generations of technologies that have preceded the ASIC, ASIC is the "end of the line" when we talk about important technology change. The CPUs have been replaced by the GPUs, themselves replaced by FPGAs that were replaced by ASICs.
There is nothing that can replace the ASICs now or in the immediate future. There will be technological refinements in ASIC products, and improvements in energy efficiency, but nothing that may match increased from 50 x to 100 x the computing power or a 7 x reduction in power consumption compared with the previous technology.
Which means that the energy efficiency of an ASIC device is the only important factor of all product ASIC, since the estimated lifetime of an ASIC device is superior to the entire history of the mining of bitcoin. It is conceivable that a purchased ASIC device today is still in operation in two years if the unit still offers a profitable enough economic to keep power consumption. The profitability of mining is also determined by the value of bitcoin but in all cases, more a device has a good energy efficiency, it is profitable.
Software :
There are two ways to make mining: by yourself or as part of a team (a pool). If you are mining for yourself, you must install the Bitcoin software and configure it to JSON-RPC (see: run Bitcoin). The other option is to join a pool. There are multiple available pools. With a pool, the profit generated by any block generated by a member of the team is split between all members of the team. The advantage of joining a team is to increase the frequency and stability of earnings (this is called reduce the variance) but gains will be lower. In the end, you will earn the same amount with the two approaches. Undermine solo allows you to receive earnings huge but very infrequent, while miner with a pool can offer you small stable and steady gains.
Once you have your software configured or that you have joined a pool, the next step is to configure the mining software. The software the most populare for ASIC/FPGA/GPU currently is CGminer or a derivative designed specifically for FPGAS and ASICs, BFGMiner.
If you want a quick overview of mining without install any software, try Bitcoin Plus, a Bitcoin minor running in your browser with your CPU. It is not profitable to make serious mining, but it is a good demonstration of the principle of the mining team.
submitted by Josephbitcoin to u/Josephbitcoin [link] [comments]

3 Types of Bitcoin Mining Hardware

There are two options for mining Bitcoin: cloud mining and hardware mining. While cloud mining has to do with mining remotely without physical mining equipment, hardware mining comes with the full package. Most people prefer to set up a Bitcoin miner as it is more profitable than cloud mining in some cases. If you want to set up your Bitcoin miner, you need to know that it is expensive and upgraded versions are made now and then.
Types of Bitcoin Mining Hardware
  1. CPU/GPU Bitcoin Miners
Although this was the first type of Bitcoin mining hardware accepted into the mainstream, it is now considered the least powerful. You’d be using the CPU of your computer to mine Bitcoins. By adding GPU hardware to your computer, you will be able to enhance the hash rate. However, the Bitcoin mining difficulty has increased so much that people can hardly make any profit for CPU/GPU mining.
  1. FPGA Bitcoin Miners
FPGA stands for Field Programmable Gate Array. It is a circuit designed for configuration after building. This allows hardware manufacturer to buy chips in volumes and customize the chips for Bitcoin miningbefore installing them into their equipment. The performance of this hardware is far better than that of CPUs and GPUs.
  1. ASIC Bitcoin Miners
Of the three types of Bitcoin miners, ASIC is the best. ASIC stands for Application Specific Integrated Circuits. They are designed specifically for the sole purpose of mining Bitcoins. They are extremely fast and consume relatively low power compared to the others. Although they are expensive, the miming speed of these miners is mind-blowing
SEE ALSO: Will Robinhood overtake Coinbase in cryptocurrency trading (Ethereum and Bitcoin)? How does Robinhood make money? – Tue Apr 17 If you want to set up your Bitcoin mining rig, the best system for you should be the one you can afford and make a profit from. Each miner has advantages and disadvantages. You can use a mining profitability calculator to decide which hardware is best for you.
Legal Disclaimer: The content of this website (smartereum.com) is intended to convey general information only. This website does not provide legal, investment, tax, etc advice. You should not treat any information on smartereum.com as a call to make any particular decision regarding cryptocurrency usage, legal matters, investments, taxes, cryptocurrency mining, exchange usage, wallet usage, initial coin offerings (ICO), etc. We strongly suggest seeking advice from your own financial, investment, tax, or legal adviser. Neither smartereum.com nor its parent companies accept responsibility for any loss, damage, or inconvenience caused as a result of reliance on information published on, or linked to, from smartereum.com.
Bitcoin cloud mining
submitted by SwitchKanun to hashflareinfo [link] [comments]

Bitcoin Mining Explained Bitcoin & Cryptocurrency Mining Industry - June 2020 Update Should You Buy FPGAs And GPU Mining Rigs? Earn From Crypto Blogging Platforms? Bitcoin Miner Software - how to mine bitcoins faster !? FORMS OF KUFR

Bitcoin Farm from FPGA (Field Programmable Gate Array) Such designs are a programmable matrix aimed at processing data at hyper speeds. Components do not take up much space, therefore, the second generation of bitcoin farms is characterized by more compact sizes. FPGAs are much more efficient than mining on GPUs and far superior to mining on FPGA (Field Programmable Gate Array) mining is considered by many experts to be the next big thing in the world of crypto mining that is expected to soon overtake the entire ASIC market. BH Miner is built with the new generation of FPGA CHIPs, which generate high hash rate power at low power consumption. BH Miners Box (6 units) Bitcoin 2160 TH/s Utilizing expertise known as Discipline Programmable Gate Array (FPGA), they promise their machines require decrease energy consumption, and produce excessive hash charges. Marketed as providing 2160 terahash per second (TH/S) when mining BTC, they notice that the BG Miners Field can herald $7951.95 revenue per thirty days. The Field Programmable Gate Array (or FPGA for short) are effectively mining rigs that can be quickly programmed with a good deal of speed and ease. If there was ever a need for a dedicated mining network to spontaneously change the makeup of its algorithm, FPGA can make the changes needed. During the last years, the bitcoin mining ecosystem has been experiencing important changes. At the beginning, it was possible to mine bitcoin with a CPU processor, but later, it was possible to do it with GPUs. After it, GPU mining was replaced by FPGA and ASIC miners. What Is FPGA? FPGA stands for Field-Programmable Gate Array.

[index] [20427] [20771] [5460] [24065] [13501] [5168] [10547] [11749] [29734] [1573]

Bitcoin Mining Explained

FPGAs or field programmable gate arrays were used for crypto mining back in 2011, 2012, and 2013 before ASICs were created to preform the same task. FPGAs are utilized as a test bed for Integrated ... The group used a silicon chip known as a field programmable gate array (FPGA) comprised of an array of cells. Electronic switches distributed thtough the array allow the behaviour and connections ... After that, the system became dominated by multi-graphics card systems, then field-programmable gate arrays (FPGAs) and finally application-specific integrated circuits (ASICs), in the attempt to ... The first wave of these specialty bitcoin mining devices were easy to use Bitcoin miners were based on field-programmable gate array (FPGA) processors and attached to computers using a convenient ... Bitcoin & Cryptocurrency Mining Industry - June 2020 Update I hope everyone enjoys this month's Bitcoin halving special edition of our cryptocurrency mining update! We will be diving in to all the ...

Flag Counter